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Abstract

The Ekadhikena Purvena sutra can be employed to calculate the number of digits before
recurrence in the perfectly recurring decimal string for a rational number 1/N, where N ends on
the digits 1,3, 7 or 9. The number of digits, x, in one recurring cycle of the string can consequently
be used to help determine the primality of N. This test is an application of Fermat's Little
Theorem. In his book, Vedic Mathematics, Sri Tirthaji gives examples of the working of the
Ekadhikena Purvena sutra in base 10, with the result that decimal strings are calculated. This
paper discusses the results obtained when the Ekadhikena Purvena sutra is applied to binary
numbers (i.e. base 2), with the resultant generation of a recurring binary string for 1/N. It was
found that, when the computation is done in binary, a typical home computer can generate all the
digits in the cyclic string related to 1/N at a rate several orders of magnitude higher than when the
sutra is applied to decimal numbers. Such an application of the sutra thus hugely increases the rate
at which the number N can be confirmed prime or not.

Background and Introduction: Prime Numbers and Fermat’s Little Theorem

Some important cryptographic algorithms critically depend on the fact that the prime factorization
of very large numbers can take a long time. For many applications, the fast identification of large
primes (often with several hundred digits) becomes very important.

Many primality tests have been developed and improved upon over the last century. The most
obvious test if that of trial division: Given an input number 7, check whether any prime integer m
from 2 to Vn evenly divides 7.

Probabilistic tests provide provable bounds on the probability of being fooled by a composite
number. Some such tests are the Fermat Primality test and the Miller-Rabin test.

Deterministic Tests provide a definite determination of a prime number. Examples of such tests
are the Pocklington Primality test, as well as the AKS Primality test.

Fermat’s Primality test is based on Fermat’s Little Theorem' which states that:
If p is prime and « is not divisible by p, then:
aP~! = 1(mod p)

(a can be any base: a =2, 3,4, ...)



This means that

ab-1 .
has a remainder of 1

We can also write:

aP~1

. 1 .
= Quotient + = where the remainder = 1

Some examples follow.

Example 1
7 is PRIME: Choose base 10

0,142 857 1..
711,030 20 60 40 S0[ib ...

6 . .
- =142857.142857
= 142857 +§ where% — 0.142857

Here, the remainder is 1.
It can, furthermore, be noted that the decimal string for% has 7 — 1 = 6 digits before

recurrence. Also (7 — 1) is divisible by the number of digits in the recurring decimal string:
6
Example 2
79 is PRIME: Choose base 10

0,01 2 6 58 2 27 8 4 810..
79 I 1 10 0 210 520 460 650 180 220 620 670 380 640 80

1079—1 1078 o .
o T oo = 1.26582278481 01265822 ... x 1076 + 0. 0126582278481

= 1.26582278481 0126582278481 0126582278481 ... x 1076 + 7—19

where % = 0.0126582278481

Again, the remainder is 1. Also, the decimal string for % has 13 digits before recurrence.

We find that

79-1 78
—_—=— =6
13 13

So (79 — 1) is divisible by the number of digits in the recurring decimal string.



Example 3

27 is not prime: Choose base 10

1027—1 1026 . .
e 3703703703703703703703703.703

=3703703703703703703703703 + % where % =0.703

Here the remainder is 19, not 1. Also, the decimal string for % has 3 digits before recurrence.

We find that

So (27 = 1) is NOT divisible by the number of digits in the recurring decimal string.

Fermat's Little Theorem in Terms of (NTA) =k

The preceding examples illustrate that Fermat’s Little Theorem can be restated as follows: If p is
prime and « is not divisible by p, then:

p— 1= k(mod x)

where k is a whole number and x is the number of recurring digits in the cyclic string for e ,
provided that the string is in the base a. This provision is linked to theorem 88 by Hardy and
Wright? and is discussed in the section entitled “More on the k-values and the ekadhika”.

Example 4
7 is PRIME: Choose base 2

7—1 6 . .
22 _% _ 942857
7 7 7

:9+% where% = (0.142857

Using base 2, the remainder is still found to be 1.

However, to correctly investigate the k-value for a number N when using a base 2, it is necessary
that the number of recurring digits x be determined for N in binary, not decimal. The binary
representation of N=7is 111.

The binary string for% is: 1—11 = 0.001. Here there are x = 3 recurring binary digits in the
string.
7-1

Using % =k we find that = =§ =2

So (7 = 1) is divisible by the number of digits in the recurring binary string.



Example 5
79 is PRIME: Choose base 2

279—1 278

79 79

= 3825714619033 636 628 817.0126582278481

=3825714619033636628817 + 7—19

where 71—9 =0.0126582278481

With base 2, the remainder is found to be 1. The binary representation of N =79 is 1001111.

The binary string for 7—19 is:

1
1001111

= 0.000000110011110110010001110100101010001

Here there are x = 39 recurring digits in the binary string.

N-1)

Using T:k we findthat °— =2 =3

39 39

So (79 — 1) is divisible by the number of digits in the recurring binary string.

Example 6
27 is not prime: Choose base 2

227—1 226

= 2 _2485513.481 = 2485513 + — where = = 0. 481
27 27 27

27
Here the remainder is 13, not 1. The binary representation of 27 is 11011.

l  —0.000010010111101101. Here there are x = 18

11011

The binary string for % is:

recurring binary digits in the string.

Using WD — k  wefindthat 22 =26=14

X 18 18

So (27 = 1) is NOT divisible by the number of digits in the recurring binary string.

The Fermat Primality Test and Pseudoprimes

Examples 1, 2, 4 and 5 demonstrate how, for any prime number N, (and any randomly chosen

N-1
base a) aT always yields a remainder of 1. They also demonstrate how, for a prime,

WD~k always yields a whole number k-value, where x is the number of recurring digits in

the string for %, provided that the string is calculated in the base a.

Examples 3 and 6 demonstrate how most non-primes yield remainders which are unequal to 1,
and k-values which are not whole numbers. So, the converse of Fermat’s Little Theorem holds
true in most cases,

N-1
Le. If aT vields a remainder of 1, or if (N — 1) is divisible by x, then N is prime.



However, the conditions stated above cannot be used as a fool-proof test for primality, as some
compound numbers - although in the minority - also meet these requirements.

Example 7
0,03 03030..

33|11,'00'00'0%..

33 is not prime: Choose base 10

1033—1 1032 ..
= — = 3030303030303030303030303030303.03

33 33
= 3030303030303030303030303030303 +% where%=0.03

Contrary to what might be expected, we see that, while 33 is not a prime number, the remainder is
found to equal 1. Also, the decimal string for % has 2 digits before recurrence.
Testing with % = k we find that 332—_1 = % =16

So here, for a non-prime, k is a whole number.

Example 8

However, if we choose base 2:

233-1 232 A
= — = 130150524.12
33 33 4

— 130150524 4+ — where —=0.12
33 33

Here we find that the remainder is not 1. Furthermore, the binary representation of 33 is 100001.

The binary string for —is: — = —— = 0.0000011111.
33 33 100001

There are x = 10 recurring binary digits in the string.

Using (Nx;l) = k we find that % =% = 3.2

So (33 — 1) is NOT divisible by the number of digits in the recurring binary string.

Thus, by inspection, we see that - while a prime number always yields a remainder of 1 (or a
whole number k-value) - a non-prime may do so as well, depending on which base is chosen.

A non-prime which yields a whole number k-value is called a Fermat pseudoprime. Below
50000, only 1.23 % of numbers which yield whole number k-values (for base 10) are
pseudoprimes.

The conventional Fermat Probability test applied to a number N follows the procedure outlined in
Column 1 of Table 1.



Test using Test using

aP~1 = 1(mod p) W=D _
X
- Choose a random base a. - Choose a base a.
- Find the remainder when a1 is - Find the number of digits x in the
divided by N. recurring string related to the base a.
- If the remainder is not 1, N is not - Calculate =2 —
X

prime. (END OF TEST)

If the remainder is 1, there is a large
probability that N is prime. In this
case, choose another random base a
and repeat the test until a remainder
unequal to 1 is found.

The more random a-values having
been tested, and a remainder of 1
having always been found, the
greater the probability that N is
indeed prime.

- If kis not a whole number, N not
prime. (END OF TEST)

- Ifkis a whole number, and k=1 then
N is prime.

- Ifkis a whole number and k # 1 (*)
then apply one further test (involving
x) to identify a factor of a potential
pseudoprime.

- If a factor is found, N is not prime. If a
factor (< v/N ) is not found, N is
prime.

Table 1

(*) It appears that, within the range of values thus far investigated, when k < 8 (for base 10) and

when k < 9 (for base 2) then N is always prime — see discussion later.

The Fermat Prime test using a?~! = 1(mod p) has Several Drawbacks:

1.

It is not deterministic: an N-value can only be identified as having a high probability of
being prime.

For very large numbers, many calculation steps are required (in a division process) to
eventually yield a remainder of 1. This may take a long time and can use up a large
amount of computing power.

There are some pseudoprimes (called Carmichael numbers) which ALWAYS yield
remainders of 1, no matter what base is chosen. Such compound numbers are thus always
incorrectly identified as primes.

Even if a number N is indeed prime, many bases may have to be investigated before its
primality can be confirmed.

The test does not suggest a method to eliminate a pseudoprime - other than by eventually
finding a remainder unequal to 1 - once the appropriate base (if it exists) happens to be
chosen.



The Fermat Prime test using k = NT_I and Vedic Mathematics

This paper discusses the results of an investigation using Vedic Mathematics, in conjunction with
the procedure outlined in Column 2 of Table 1, to help determine the primality of a number N.
The Ekadikena Purvena sutra is employed to determine the number of recurring digits, x, in the
binary string for% .

This value can be used to determine the k-value where k = %

If k=1, N is identified as prime. If k is a whole number greater than 1 (* see note previous page)
an additional test, also using x, is carried out. This test can be used to successfully sift out
pseudoprimes.

The method outlined in this paper (although it still has a probabilistic component, as will soon be
explained) has been used to identify all prime numbers below 500 000. It is suggested that the
Fermat Primality test done in this way, addresses some of the drawbacks listed in the previous
section for the conventional Fermat test: Use of the algorithm stated in the sutra may reduce
computing time and power, while the x-value (which is found by application of the sutra) is used
to identify the factors of all pseudoprimes, even the Carmichael numbers.

The Ekadhikena Purvena Sutra

Sri Tirthaji’ showed that the full recurring decimal string for every number N, ending on a 1, 3, 7
or 9, can easily be found by using the Ekadhikena Purvena division technique.

The sutra states: “By one more than the previous one”.
The generation of the decimal string for 1—19 is demonstrated below:

The denominator consists of the two digits 1 and 9. Defining the “previous one” as the digit
before the 9, i.e. the 1 in the case of 19: “One more than the previous one” is: 1 + 1 = 2. This 2
(called the “ekadhika”) is now the new divisor (from left to right), or also the new multiplier
(from right to left).

For string generation from left to right, instead of attempting to divide 19 into 1 (according to the
conventional method), the procedure is now to simply divide 2 into 1 instead, i.e.

2 divided into 1 equals 0 remainder 1. For this, write:
'0

with the rem 1 a superscript to the left of the quotient 0. Then divide 2 into 10, giving 5 rem 0:
1075

Then divide 2 into 5, giving 2 rem 1:
0% "2

Division of 2 into 12 then yields 6 rem 0:

109517 %



Division of 2 into 6 yields 3 rem 0:

0% 2% 3
Division of 2 into 3 yields 1 rem 1:

0% 2% 31
Division of 2 into 11 yields 5 rem 1:

0% 2% 15
Proceeding thus, the 18 digits of the recurring string

1095 12% %9311 '51718% 1471316 °8 °4 °2 °1are generated.

Alternatively, the digits in the decimal string can also be generated from right to left in the
following way:

Starting with 1 on the very right, multiply the 1 by 2 to obtain 2; then multiply this product by 2
again to obtain 4; then multiply 4 by 2 to obtain §8; then multiply 8 by 2 to get 16,

ie. 168421

where the ten’s digit of the 16 is written as a superscript 1, ready to be added (“carried over”) onto
the product of the next multiplication by 2. The next step is to multiply only the 6 by 2 to get 12,
after which the superscript 1 (from the ten’s digit of 16) is added onto 12 to get 13,

ie. 368421

Now multiply only the 3 by 2, then add 1 to get 7. Multiply 7 by 2 to get 14, and write the ten’s
digit of the 14 as a superscript 1:

14713168421
Proceeding thus, the complete cyclic string is obtained:
0526311578914 713'68421

The number of steps in the calculation can, furthermore, be halved by noting that the string of
digits comprising the first half of the decimal expansion, added to the string of digits making up
the second half, yields a sequence of nines, i.e.

052631578 +
947368421
999999999

This phenomenon is an application of the Nikhilam Navatascaramam Dasatah sutra:

“All from 9 and the last from 10” because, when the digits in the first half of the string are
subtracted from 9, the digits in the second half of the string are obtained. “The last from 10” never
features, as there is no last digit in a non-terminating string.



Explanation of the Working of the Ekadhikena Purvena Sutra

The recurring decimal string associated with a fraction is a geometric series of the numbers
generated by dividing or multiplying successive terms by a common ratio related to the
“ekadhika”.

In general, any perfectly recurring decimal for 1/N can be written as:

1 o 1 \» [ (N+1)
N = &n=1 (m) The ekadhika is then 0

The Ekadhikena Purvena Sutra applied to % where N has a Final Digit 1,3 or 7

When the sutra (used on numbers to base 10) refers to the “previous one” it must always be
“previous to” the digit 10 — 1 =9 in the denominator of a fraction. So that the sutra can be applied
to decimal rational numbers (in form%) with denominators ending also on the digits 1, 3 and 7,
such fractions can be manipulated as follows to have a last digit equal to 9:

1.9 9 1 1.3 3 1_1,7_7
21 2179 189 13 1373 39 77 7777 49
) 1 13 3

For 1nstance: — = —X-=

13 1373 39
For 39, “one more than the previous one” is 3 + 1 = 4. The ekadhika is thus 4. For right to left
string generation, start with the numerator 3 as the last digit before recurrence, and then multiply
successively with 4, thereby obtaining:

0%27%9"123
Thus 1—13 = 0.076923

The process repeats until a remainder of 3 is once again reached. Because 3 is the very first
multiplicand, any further steps in the process yield the same sequence of digits again.

: 1 %) 1 n 3 1 0 1\1
Note: Employing —= X, (ﬁ) D= =3%-= 3% IR, (E)

The ekadhika = 40/10 =4

The ekadhika is seen here to be a multiple of 10 (as the decimal system employs a base 10).

Computer Program (to Generate Decimal Strings) and the Method of Rooting Out
Pseudoprimes

The results of employing a computer program, using the Ekadhikena algorithm, to generate the
decimal strings for all N-values (ending on 1, 3, 7 or 9 - this includes all primes excluding 2 and
5) between 3 and 10 000 have already been reported in a previous article. The lengths x of the
strings before recurrence were found, which then enabled the testing for

primality (testing whether k = (Nx;l) is a whole number or not). The method of rooting out



the pseudoprimes (with reasons) was also discussed in detail in the above-mentioned article. It
was reported how all primes below 10 000 were successfully identified, and all pseudoprimes
were easily eliminated using a method which is again briefly outlined (without proof) below:

If N happens to be a pseudoprime (base a) it satisfies the criterion that,
N-1
X

k =
is a whole number. Thus also N = (kx + 1). It can be shown that:
If N is a pseudoprime: It has factors in the form (dx + 1) where d <k

Therefore, once N is found to have a whole number k-value greater than 1, it is tested for a factor
(dx + 1) <+/N. If no such factor is found, then N is prime.

Since the writing of the previous article, additional analysis has successfully revealed all the 5133
primes below 50 000, as well as all the pseudoprimes (base 10) below 50 000. The list of all the
64 Fermat pseudoprimes (base 10) below 50 000 is given in Table 2.

Note that the smallest k-value is 8. The second smallest is 15.

The 64 Pseudoprimes (base 10) below N =50 000
(1.23% of the 5 197 numbers below 50 000 with whole number k-values)

N X k N X k N X k N X k

9 1 8 3333 4 833 11111 5 2222 21931 30 731

33 2 16 3367 6 561 11169 16 698 23661 14 1690
91 6 15 4141 20 207 11649 32 364 24013 174 138
99 2 49 4187 13 322 12403 78 159 24661 30 822
259 6 43 4521 8 565 12801 400 32 27613 52 531
451 10 45 5461 42 130 13833 364 38 29341 60 489
481 6 80 6533 46 142 13981 30 466 34113 328 104
561 16 35 6541 30 218 14701 60 245 34133 1484 23
657 16 35 6601 330 20 14817 32 463 34441 60 574
703 18 39 7107 374 19 14911 30 497 35113 24 1463
909 4 227 7471 30 249 15211 390 39 38503 138 279
1233 8 154 7777 12 648 15841 120 132 41041 30 1368
1729 18 96 8149 28 291 19201 30 640 45527 26 1751
2409 8 301 8401 15 560 19503 98 199 46497 32 1453
2821 30 94 8911 198 45 20961 16 1310 46657 96 486
2981 10 298 10001 8 1250 21153 32 661 48433 48 1009

Table 2



The Generation of Binary Strings Using the Ekadhikena Purvena Sutra

The use of decimal strings for prime number identification was found not to be ideal. Using the
computer program on a home PC to obtain the decimal strings of the reciprocals of (relatively
small) primes close to 1 000 000, proved eventually to take up far too much time.

For example, while the prime 4007 (with 4006 recurring digits and thus & = 1) took but 0.47
seconds, and the prime 8017 (also with k£ = 1) took but 1.81 seconds to identify, the prime 80051
(also with £ = 1) took 4 minutes 13 seconds to identify. The prime 999 983 (also with £ = 1) took
about 3.2 hours to identify. However, a prime with a much larger k-value, and thus less recurring
digits x, took far less time to identify: for instance, 43 037 (with only 29 recurring digits and thus
with & = 1484) took but 0.03 seconds to identify.

Besides attempts to improve the computer programming methods and efficiency, as well as using
a faster and more efficient computer, it was decided to investigate whether application of the
Ekadhikena Purvena Sutra on binary (instead of decimal) numbers might improve the speed of
prime number identification. An example of how this can be done is given below.

Example 9
13 in binary is 1101. To find the binary string of Tlm proceed as follows:

By one more than the one before “110”: 110+ 1=111 The ekadhika is thus 111.

Starting with 1, and using 111 as the multiplier from right to left, and carrying and adding
successive binary digits, the following binary string is obtained:

x111 x111  x111 x111 x111  x111 111

x
x
a

11 x111 x111 x

o

11 x111

x

N BN ETN BTN BN - I~y e~ T~ ETN TN N
1 10 100 1000 11 110 1100 1011 1001 101 1010 111 1
Thus: L —0.000100111011

1101
There are x = 12 binary digits in one recurring cycle of this string.
Using ®=D — k we find that =% =1.
x 12
With k=1, N= 13 is correctly identified as prime.

The algorithm of the sutra, employed to binary 1—13 , thus proceeds as follows:

0001
x 111 + 000 = 0111
1 x 111 + 011 = 101]
El x 111 + 101 = 0101
1 x 111 + 010 = 1001
1 x 111 + 100 = 1011

1 etc.

Figure 1



Comparison of k-values in Binary and in Decimal

For the case of %:

In decimal: L= 0.076923 x=6 and k= Ww-1) _ @3- _ 2

13 x 6

L =0.000100111011 x =12 and k=L =D _4

1101 x 12

In binary:

So, although the k-values differ, they are whole numbers in both bases. Furthermore:

For % :
076 +
924
999

. 1
while for —:
1101

000100+
111011
111111

1—13 in decimal displays the working of the sutra because the first half of one cycle of therecurring

string adds to the second half to yield a string of 9’s.

But % in binary displays an adapted version of this sutra, i.e. All from I and the last from 2,

because the two halves of its cyclic string yield a string of 1’s when added.

This last phenomenon is found to occur for all even-numbered strings related to prime numbers
(proof given in a previous article’), but it only occurs occasionally for a pseudoprimes. This
phenomenon is briefly touched upon later.

Using binary numbers, Fermat’s prime test is carried out in base 2. The Ekadhikena Purvena sutra,
applied to binary numbers, uses: By one more than the one before the 1, instead of By one more
than the one before the 9, as is the case for decimal numbers.

This addition effectively makes the right-to-left multiplier (or left-to-right divisor) - the Ekadhika
- a multiple of 2 (instead of a multiple of 10, as is the case when the Ekadhika is used to generate
a decimal string).

A binary string is an infinite geometric series based on powers of 2. The following example

displays the working of the “by one more than the one before” concept employed by the

Ekadhikena sutra applied to % in binary. It shows how the recurring string for % consists of an
infinite number of successive powers of % = 2% (= 0.001 in binary) added together. It also clearly

demonstrates why there can be only three digits before recurrence in the binary string for % (thus

making k = 2).



Example 10

terminating

binary string \

= 1000 —0001 the ekadhika

(1000) (0,001)! + (0,001)2 + (0,001) + (0,001)* + - oo

Ms

) )

= 1= 0,001001001001001... 00

N =

When right-to-left string generation is done in binary, the very last digit before recurrence (i.e. the
first digit to be multiplied by the Ekadhika) is always a 1. Because only 1’s and 0’s are employed,
the algorithm is found to generate recurring strings much faster than is the case for decimal
strings.

Computer Program to Generate Binary Strings for Numbers Below 500 000

A computer program was written which employs the Ekadhikena sutra adapted for binary
numbers. All numbers ending in 1, 3, 7 or 9 below 500 000 (in decimal) were converted into
binary, and the lengths of their binary strings were determined by the program. A time
comparison was done between the rate of prime number identification in binary versus in decimal.
An example of the identification of a prime number close to 500 000 follows.

Example 11
Test N =481 433 (prime)

1 _ 1
481433 ~ 1110101100010011001

Convert into binary:

Calculate the ekadhika: 111010110001001100+1 =111010110001001101

Proceed with right to left multiplication of 1 with the ekadhika, to obtain the full cyclic string
shown on the next two pages.

481433-1
8597

Number of recurring digits: x = 8597 k = =56

Time for calculation of x: 0.11 seconds.

Time for confirmation that not pseudoprime (test for a factor (dx + 1) where d < k):~

1 1
481433 ~ 1110101100010011001
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Of these, 144 (0.35%) were identified as base 2 pseudoprimes (Poulet numbers) by finding that

they were divisible by a factor (dx + 1) with d < k. Thus 41 681 — 144 = 41537 primes were
Thus N—-values with & = 1 take the longest time to confirm their prime status: the longest string

below 500 000 (i.e. the string for 499 979) took about 5 seconds to generate. Such strings do not

need to be subjected to a further pseudoprime test.
The strings for numbers with larger k-values (thus with relatively shorter cyclic strings) were

larger numbers were tested at random: While the string for 1 900 043 (with k£ = 1) was found in 23

Although all numbers (ending on the digits 1, 3, 7 and 9) below 500 000 were tested, several
seconds, the string for 1 900 009 (with &

Results of Testing for Primality, and the Time Period to Generate Binary Strings

Between 3 and 500 000: 41 681 numbers were found to have whole number k-values.

found. Including 2, all the 41 538 PRIMES below 500 000 were thus successfully identified.

The time for identification using binary strings, is much faster than when using decimal strings
(refer to Tables 3 and 4).

The identification time depends on the x-value, i.e. the number of binary digits occurring in one
generated much quicker. For instance, the string for 498961, with £ = 10, was found within 0.56

cycle.
seconds.

72) was generated in 0.4 seconds. The generation of

the string for a binary number near 10 000 000 (with & = 100) took only about 1 second.



Table 4 shows a comparison of the maximum time (i.e. with k = 1) it takes for approximately
equal length strings to be generated in both base 10 and base 2. The difference between the
generation time for decimal and binary strings was found to increase substantially as the numbers
grow larger.

Table 3
k=1 k=2 k=3 k=10
N x time(s) x/time N x time(s) x/time N X time(s) x/time N  x time(s) x/time
5003 5002 |0.015| 333467 5009 2504 |0.015 | 333867 5301 1700 | 0.000 | 750000 4871 487 |0.000| 1800000
10037 10036 | 0.079| 127038 10007 5003 |0.051 | 196197 9973 3324|0016 | 623250 9431 943 |0.000 | 1500000
20029 20028 | 0.156| 128385 19991 9995 |0.088 | 227160 20011 6670 | 0.047 | 425745 19471 1947 |0.015 | 1298000

30011 30010 | 0.188 159628 29983 14991 |0.116 | 258466 30133 10044 | 0.078 | 386308 31391 3139 |0.031 | 1012581
39989 39988 | 0.323 123802 40031 20015 |0.172 232733 39883 13294 | 0.109 | 365890 41201 4120 | 0.031 | 1329032
50021 50020 | 0.36 138944 50033 25016 |0.183 | 266128 49957 16652 | 0.141 | 354298 51071 5107 |0.032 | 1595938
60029 60028 | 0.516 116333 60017 30008 |[0.234 | 256479 60013 20004 | 0.172 | 348907 60041 6004 |0.047 | 1277447
70003 70002 | 0.625 112003 70001 35000 |0.328 | 213415 70099 23366 | 0.188 | 372862 70991 7099 | 0.063 | 1126825
80021 80020 | 0.667 | 119970 80039 40019 |0.328 | 244019 79693 26564 | 0.234 | 340564 80149 8015 | 0.078 | 1027538
90011 90010 | 0.812 110850 90007 45003 |0.371 | 242604 89923 29974 | 0.25 359688 90071 9007 | 0.078 | 1154744
100003 100002 | 0.855 116961 100057 50028 |0.453 | 220874 100069 33356 | 0.312 | 320731 100591 10059 | 0.094 | 1070106
120077 120076 | 1.033 116240 120047 60023 |0.547 | 219463 120067 40022 | 0.328 | 366055 120041 12004 | 0.14 857429
140069 140068 | 1.266 110638 139999 69999 |0.625 | 223997 140053 46684 | 0.406 | 344956 139991 13999 | 0.141 | 992837
160019 160018 | 1.391 115038 160159 80079 |0.781 | 205068 160243 53414 | 05 320484 160031 16003 | 0.156 | 1025833
180043 180042 | 1.641 109715 180023 90011 |0.862 | 208842 180811 60270 | 0.562 | 321726 180361 18036 | 0.187 | 964492
200003 200002 | 1.876 | 106611 200023 100011 | 0.886 | 225759 200293 66764 | 0.625 | 320467 200591 20059 | 0.187 | 1072674
220013 220012 2 110006 219983 109991 | 1.047 | 210107 220141 73380 | 0.687 | 320437 219871 21987 | 0.204 | 1077794
240011 240010 | 2.251 106624 239999 119999 | 1.094 | 219377 239893 79964 | 0.75 | 319856 23859123859 | 0.261 | 914138
260003 260002 | 2.433 106865 260023 130011 |1.187 | 219058 260011 86670 | 0.782 | 332494 260441 26044 | 0.312 | 834744
280013 280012 | 2.594 107946 280031 140015 | 1.406 | 199168 280069 93356 | 0.938 | 298580 27976127976 | 0.297 | 941953
300043 300042 | 2.906 | 103249 300007 150003 | 1.469 | 204225 300109 100036 | 0.969 | 309709 300151 30015 | 0.313 | 958946
350003 350002 | 3.359 | 104198 350033 175016 | 1.578 | 221820 349813 116604 | 1.187 | 294703 350561 35056 | 0.375 | 934827
399989 399988 | 3.548 [ 112736 400031 200015 (1.985 | 201526 400051 133350 | 1.308 | 305849 40047140047 | 0.407 | 983956
450101 450100 | 4.329 103973 450103 225051 | 2.031 | 221616 450019 150006 | 1.371 | 328241 450071 45007 | 0.438 | 1027557
499979 499978 | 5.079 98440 499943 249971 | 2.406 | 207790 499957 166652 | 1.621 | 308424 498961 49896 | 0.558 | 894194

Table 3
Some k-values for primes in range 5000 to 500 000

Decimal String Generation time (s) Binary String Generation time (s)
with k=1 with k=1
20 047 11 20029 0.2
90011 300 90011 0.8
499 976 960 499 976 5.1
999 983 11400 1 000 003 8.7
- - near ten million 117

Table 4



The Rooting out of the Pseudoprimes

With its whole number k-value status established, each of the 144 pseudoprimes below 500 000
was identified as such in an additional time of less than 0.001 seconds. This was done by testing
all numbers with &> 1 for a factor (dx + 1) < +/N. See Table 5 for the results.

Some Important Observations with Regards to the Pseudoprimes and their Testing:

1. In decimal (for all numbers tested below 50 000) no pseudoprime revealed a k-value less than
8. In binary (for all numbers tested below 500 000) no pseudoprime was found to have a k-value
less than 9. The calculation time for the recurring string of a pseudoprime is thus generally far less
than for a real prime of approximately equal size. The reason for large pseudoprime k-values (thus
relatively shorter recurring strings) lies in the fact that a pseudoprime must have at least two
factors, both of which themselves, can be written in terms of x. An attempt at illustrating this is
given below:

Say N has two unequal prime factors, i.e. N = (dix + 1)(d,x + 1)

then kx+1=(dx+1)(d,x+1)

which yields k=dd,x+d, +d, ifx+#0
If d; and d, are integers, their smallest possible values are 1 and 2 respectively.
Assuming x > 2 then yields: k=1)2)2)+1+2

Thus k>7

However, many d-values are not integers greater than 1 - many have fractional values lying
between 0 and 1. In such cases, the x-value must be big enough to still yield a relatively large -
value. The above illustration, therefore, does not cover all eventualities.

Furthermore, the smallest factor must have the property:  (d;x + 1) <N

Thus (dix+1)? <kx+1
and k> (d)?*x + 2d, ifx#0
Substitution of d; = 1 then yields k>x+2

This suggests that a pseudoprime with two factors having d; and d, greater or equal to 1, implies
x < k. The data in Table 5 is in accord with this observation. Also, d,; and d, are integers. The
only three N-values (with two factors) in Table 5 with non-integer d; and d,-values less than 1,
have x > k. These numbers are 4371, 8911 and 25761.

Table 5 shows that pseudoprimes with three and four factors were also found. Except for one
number (294409, with x = 36; factors 37, 73 and 109; and respective d-values 1, 2 and 3) all such
pseudoprimes have one or more non-integer d-values. In fact (in the case of there being more than
two factors), very few integer d-values occur, but when they do, it is invariably for cases where x
<k.



If it can be conclusively established why k > 9 for base 2 pseudoprimes, the prime test can be
adapted to immediately confirm the primality of any N-value with k < 8. Within the range
investigated, about 88% of all whole number k-values lie below 9. If this trend extrapolates to
larger numbers, many more primes may thus be identified without the need for any further testing.

2. Due to the necessity of testing for non-integer d-values during the pseudoprime test, the overall
method still has a probabilistic component: If no factor has yet been found by the time one tests,
say, for for d = 999999/1000000, what limit must be set to stop the test and confirm that N is
indeed prime? (Or, a limit having been set and no factor found within that limit, what is the
probability than N is prime?) The limit placed on both the numerator and the denominator of d in
the computer program employed in the current investigation, was about 2000. Within the range of
numbers investigated, no pseudoprime “slipped through unidentified” using this criterion.

3. Figure 2 shows the percentage occurrence of whole number k-values within the range
investigated. For the 41 681 numbers below 500 000 with whole number k-values:

88% have 1<k <8 (nopseudoprimes in this region).
11.2% have 9 <k <200 (28 pseudoprimes found)
0.8% have  k > 200 (116 pseudoprimes found)

Also, 37.3 % have k = 1, thus confirming them prime.

Looked at in a different way: (See Figures 3 and 4).

For binary numbers, only 0.35% (144 out of 41681) of all the whole number k-values below
500 000 are pseudoprimes.

Only 28 of these (~ 0.07%) are found amongst the 41373 numbers with k-values less than 221.

116 pseudoprimes are amongst the 308 numbers (~38% of them) which have the biggest k-values
(with &’s between 221 and 16 789).

With reference to the last point, one might thus reasonably conclude that, if a tested binary
number has a k-value greater than about 220, there is an approximate 40% chance that the number
is a pseudoprime

Figure 4 illustrates the density of occurrence of base 2 pseudoprimes with k > 221.
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Out of those numbers with the 308 biggest k-values, 116 are pseudoprimes.

A number with a large k-value (i.e. relatively few recurring digits compared
to the binary string length) has ~ 40% chance of being a pseudoprime.

It appears that for k< 9, Nis always prime.

Figure 4




4. Using the (dx + 1) < +/N pseudoprime test, while all factors of pseudoprimes were found in
less than 0.001 seconds, all actual prime numbers (with k-values greater than 1) took much longer
— between about 0.3 to 0.6 seconds - to be checked for factors in form (dx + 1). The 0.6 second
maximum time was, of course, determined by the limit set on the d-value. When no such factor
was found, the test was terminated. It was observed that: Just by ordering numbers in terms of the
run-time for the pseudoprime test, all pseudoprimes were immediately sifted out. A possible
criterion for pseudoprime identification could thus be: Within a certain range of numbers, if the
run-time for the pseudoprime test is greater than a pre-determined cut-off time, one can almost be
certain that N is prime.

5. All prime numbers N with even-numbered strings have the property that the first half of the
binary string for 1/N adds to the second half to give a string of 1’s (the adapted Nikilam sutra: “All
from 1 and the last from 2”). There are 134 pseudoprimes (out of the total 144 pseudoprimes
below 500 000) with even-numbered strings. Only 22 of them concur with the adapted Nikilam
sutra. Thus, the overwhelming majority of pseudoprimes (84%) do not possess this property. This
difference between a pseudoprime and a prime might be usefully employed as an additional factor
in a primality test procedure.

6. A study of the data in Table 5 shows that: For a pseudoprime N, the number of recurring digits
in 1/N (i.e. x) is the lowest common multiple (LCM) of the number of recurring digits (say, x1,X,,
etc.) in each of the cyclic binary strings related to the respective prime factors (say (dix +1) ,
(d,x + 1) etc.) of N. This accords with the fact that each factor must itself be one plus a multiple
(or submultiple) of x. The next example serves to illustrate this observation.

Example 12

For N =90 751 with x = 75 and k = 1210 and factors 151 and 601 (both prime), the respective
values for d; and d, are 2 and 8.

90751 = kx + 1 = (1210)(75) + 1
Also dix+1=(2)(75)+1=151 and dox+1=(8)(75)+1=601

The prime factors 151 and 601, themselves, have respective x-values (i.e. number of recurring
digits in the strings for ﬁ and 511 )of x; = 15and x, = 25.

Thus kyx; +1=(10)(15)+1 =151 and k,x, +1=(24)(25)+ 1 =601
Both 15 and 25 are divisors of 75. Thus x; and x, are divisors of x. Thus, x is the LCM of x; and

Xy.

More on k-values and the Ekadhika
To paraphrase J. Pickles (2000)°:

1t is evident that a cycle of length (N — 1) is the longest that can be achieved with the
divisor N. The successive steps of division by N can never be exact, or the decimal



would terminate, and there are only (N — 1) possible remainders. Once these are
exhausted, the sequence must repeat.

The maximum number of digits must be (N — 1). Why do some numbers have the property that the
sequence of numbers in a cycle is only half this maximum limit (i.e. £ = 2) or one third of this
maximum limit (i.e. £ = 3) etc.?

The answer to this question lies in what has already been pointed out in Example 10, where 1/7 in

binary must necessarily only have 3 binary digits before recurrence. (It is the same reason why %

in decimal must also have only three decimal digits in one recurring cycle.)

Hardy and Wright® address the answer to this question in Theorem 88 of the book The Theory of
Numbers.

Theorem 88 of Hardy and Wright:
a* = 1 (modN) has a smallest solution x which is a divisor of ®(N)

where ®(N) is equal to the number of integers smaller than N which are relatively
prime (co-prime).

pe
Stated in another way: If %= is found and a remainder equal to 1 is obtained (i.e. recurrence
y N q

occurs), then the smallest possible value for x is a divisor of @(N). Thus @(N) divided by x must
have an integer value, i.e. @ = k. Since all integers smaller than a prime number are relatively

prime to it, @®(N) = N — 1 for a prime. Therefore, for a prime number: % = k. It also follows

that, if x = N — 1, (thus k= 1) N is always prime.

For a compound number, since there are some numbers below it which are not relatively prime, it
follows that (N — 1) = @(N) + n,, where n, represents the number of integers smaller than N which
are not co-primes. In the case of a pseudoprime, it just so happens that n, is also divisible by N,
which is usually not the case for a non-prime. This has been illustrated in a previous article®.

In a brief analysis, Jeremy Pickles® uses several examples to show that there is a relationship
between the ekadhika and the k-value: The ekadhika is either a perfect power of k, or it is a
polynomial residue of the divisor N. The following examples illustrate this phenomenon:

Example 13
In basel0: — = —x 2 = > Use of the sutra shows that x = 81, thus £ = 2.
163 163 3 489

Here the ekadhika is 48 + 1 = 49 = 72. We thus see that the ekadhika is a power of k = 2.



Example 14

In basel0: 517 = 517 X ; = # Use of the sutra shows that x = 42, thus £ = 3.
Here the ekadhika is 88 + 1 =89 =(6)3-1(127)
3
We can also write: B
127~ 127

We see thus that the ekadhika is the cubic (i.e. power k = 3) residue of the divisor 127.

Example 15

1 1
In base 2: for— = :
113 ~ 1110001

Here the ekadhika is 111000 + 1 = 111001 = 57 = (12)* — 183(113)
57 12*

We can also write: — ==-183
113 113

Use of the sutra shows that x = 28, thus £ = 4.

We see thus that the ekadhika is the quartic (i.e. power k& = 4) residue of the divisor 113.

In general, the relationship between the ekadhika and the k-value (and thus also the number of
digits before recurrence) is thus:

ekadhika = y* — gN
where both y and ¢ are integers, and ¢ is the quotient when )" is divided by N.
We can also write: y* = ekadhika(mod N)
It is of interest to compare this to Fermat’s Little Theorem: a?~! = 1(mod p)
The k-values for one number also differ depending on the base used, as shown in Figure 4.
For% in decimal: k=1 ekadhika=5 = (12)! — 1(7)
For~inbinary: k=2 ckadhika = 4 = (2)?

N =7 = Decimal: N =111 = Binary:
1-0.142857... —~ =0.001...
7 111
2-0.285714 ... 2% -0.010...
7 111
220.428571.... 2L - 0.110....
7 111
2-0.571428.... 1% - 0. 100....
7 111
5-0.714285 .... 21-0.101...
7 111
£-0.857142 ... 2%-0.110...
7 111

xX=6 x=3
k=1 k=2
Figure 4

Summary and Suggestions for Further Investigation

1. Compared to decimal string generation, a computer program (employing the Ekadhikena
Purvena sutra) can generate the number of of recurring digits in the binary string for Sata much



higher rate. The difference in the generation rate of binary versus decimal strings increases with
N.

2. Binary numbers up to about 10 million have been investigated. The maximum time (if k= 1) to
generate the recurring string for a number close to 107 is approximately 2 minutes. Although this
is several orders of magnitude faster than when the sutra is applied to decimal numbers, the
current method would still take an impossibly long time to identify primes with several hundred
digits (i.e. those used in cryptology).

3. The programming for this investigation was done using TrueBasic. The algorithm is currently
being rewritten in C++. By using more efficient data structures, calculation times may be reduced
significantly.

4. Employment of hogher-performance computing hardware and more efficient implementation of
the algorithms should enable far larger prime numbers to be identified using the method outlined
in this paper. The home PC that was used in the current investigation has the following
characteristics:

Intel Core 15-7200U 2,5 GHz with Turbo Boost up to 3.1 GHz
4 GB DDR4 Memory; 1000 GB HDD
The new C++ program will be run using a faster processor and larger RAM.

5. All prime numbers N (and several pseudoprimes) with even-numbered strings have the property
that the first half of the binary string for 1/N adds to the second half to give a string of 1’s. It is
planned to incorporate this property (propounded by the Nikilam sutra) into the improved C++
program — thus possibly reducing by up to a half the time required to generate recurring strings.

6. Once the improvements suggested in points 3, 4 and 5, have been implemented, it is planned
that the rate at which the improved program generates binary strings, be compared with the rates
at which other existing methods achieve the same result. This has not yet been done.

7. If it can be conclusively established why k > 9 for base 2 pseudoprimes, the prime test can be
adapted to immediately confirm the primality of any N-value with k < 8. (See Figure 5)

8. Employment of the Ekadhikena Purvena sutra to find the number of recurring digits x in a
binary string, serves a dual purpose: Besides being able to prove primality when x = 1 (or perhaps
even when < 8), the x-value can also be used in the search for factors of pseudoprimes in the
form (dx + 1). However, due to the necessity of testing for non-integer d-values during the
pseudoprime test, the overall method still has a probabilistic component. Further investigation
needs to be done to find out if a limit can be set on d, below which the test can be terminated, and
N confirmed, unquestionably, to be prime. Alternatively, a limit to d having been set, and no
factor found within that limit, can one set a value to the probability that N is prime?

9. Do the Carmichael numbers have any particular pattern in their k-values which make them
always pass the conventional Fermat Primality test, no matter what base is chosen? This is a topic
for further investigation.



10. Another topic for investigation is the relationship between the formulas:
y* = ekadhika(mod N) and a?~! = 1(mod p) discussed in the previous section.

11. It is proposed that, within a large range of data, a Fourier analysis be done on calculated -
values to see whether any pattern in their occurrence emerges.
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Appendix
Adapted
Fermat N definitely
Primality Test PRIME
Algorithm
ﬁ Only factoris
(kx + 1)
\ a=k
Test N for a factor
input N —— N _1_ a:(lcf);,;}.)k
7
0’% N not prime /b’;’ e
007&@/. a<k

Figure 5

A proposed, adapted, Fermat Primality test
(if it can conclusively be shown that no non-prime exists with k < 8)
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