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Abstract 

Determining the roots of polynomial equations is fundamental with iterative methods available 
to do the tedious calculations. These iterative methods include the Bisection Method, the 
Regula-Falsi Method, the Newton-Raphson Method, the Secant Method and Halley’s Method 
to name a few. The purpose of this paper is to compare how effective these methods are when 
compared to the Vedic Method. This comparison will be made on the basis of the number of 
calculations necessary to produce real roots to 4 decimal places for both simple and more 
complicated Cubic and Quartic equations using the above stated methods and comparing these 
results to that of the Vedic approach.    

Introduction 

The solution to cubic and quartic polynomial equations is notoriously difficult to determine 
using a formula approach. Determining roots for the quadratic equation in the form ax2 + bx + 
c = 0 is relatively easy using the quadratic formula: 

 
If the roots of a polynomial are either integral or simple rational (p/q where both p and q are 
both integers), there are techniques available to determine the roots. Three of these techniques 
to be used in combination are: 

1. Descartes' rule of signs, first described by Rene Descartes in his work	La Geometrie, is a 
technique for determining an upper bound	on the	number of positive or negative real roots of a 
polynomial. It is not a complete criterion, because it does not provide the exact number of 
positive or negative roots. The rule is applied by counting the number of sign changes in the 
sequence formed by the polynomial's coefficients. If a coefficient is zero, that term is simply 
omitted from the sequence. 

2. 	The	Rational Root Theorem	states a constraint on rational solutions of a polynomial 
equation with integer coefficients. These solutions are the “possible”	 roots	(equivalently, 
zeroes) of the polynomial: P(x) =	anxn	+	an−1xn−1	+ ... +	a1x	+	a0	for some	a0, ...,	an	∈	Z. 

If	a0	and	an	are nonzero, then each rational	solution	x, when written as a fraction	x	=	p/q	in 
lowest terms (i.e., the greatest common divisor	of	p	and	q	is 1), satisfies, 

p	is an integer factor	of the constant term	a0, and 

q	is an integer factor of the leading coefficient	an. 



	

3. Synthetic Division – Once a potential root, “r,” is determined using the above two 
techniques, synthetic division can be utilized to determine if dividing the given polynomial by 
the factor (x-r) will result in a 0 remainder.   

The problem that develops is when the root(s) of the given polynomial are real, but, not 
integral.  

One approach developed to determine cubic roots is a formula discovered by Girolamo 
Cardano in the 16th century to determine the solution of ax3 + bx2 + cx + d = 0 is 

 
 

Or, more briefly, 

x   =   {q + [q2 + (r-p2)3]1/2}1/3   +   {q - [q2 + (r-p2)3]1/2}1/3   +   p 
where, 

p = -b/(3a),   q = p3 + (bc-3ad)/(6a2),   r = c/(3a) 
  

This formula will determine a root of the cubic equation with accuracy, but, on the other hand, 
to determine roots using this approach would be extremely time consuming and difficult. In 
addition, the formula to determine roots for quartic equations discovered by Lodovico Ferrari, 
a student of Cardano, is significantly more tedious and complicated. 

In order to determine roots for cubic and quartic equations in a more efficient and simpler 
manner, iterative methods were developed which enables the expedious manual and/or 
computer solution of these types of equations. In this paper, I will calculate the roots of the 
following equations to 4 decimal places using iterative methods: 

Cubic Equations: 

x3 - 100 = 0 where x = 4.6416 

x3 + x2 + 3x - 186 = 0 where x = 5.2290 

 
Quartic Equations: 

x4 – 100 = 0 where x = 3.1623  

x4- 2x3 + 4x2 - 5x – 10 = 0 where x = 2.1810 

I will provide a short description of each of the following methods followed by excel 
spreadsheets which have solved for the roots of the four above detailed equations to 4 decimal 



	

places: the Bisection Method, the Regula-Falsi (False Position) Method, the Newton-Raphson 
Method, the Secant Method and Halley’s Method. I will indicate the number of arithmetic 
operations required to solve each equation which is a main indicator of speed of convergence. 
Finally, I will solve each of these equations using the Vedic approach and make a comparison 
of results. 

Explanation of Iterative Methods 

The Bisection Method 

The Bisection Method is one of the oldest and most reliable ways to calculate the roots of a 
continuous function. It makes use of the Intermediate Value Theorem which basically states 
that: if f(x) is real and continuous over an interval [xL,xU] and f(xL)f(xU)  < 0, than there exists 
at least one  real root between xL and xU .  

The steps to use the Bisection Method to determine the real root of f(x) =0 are as follows: 

1. Chose xL and xU as initial guesses. These guesses are not arbitrary. They must bracket the 
real root of the function to be determined. That is to say, f(xL) f(xU) < 0. 

2. Determine the mid-point: xM = (xL + xU)/2 

3. Find whether f(xL)f(xM) is <0, >0 or =0. 

a. if f(xL)f(xM) < 0, then xL =  xL and  xU =  xM 

b. if f(xL)f(xM) > 0, then xL =  xM and xU =  xU 

c. if f(xL)f(xM) = 0, then xM is the root to be determined 

4.  Find new xM = (xL + xU)/2 

5.   Determine │ε │= │(xM	(new) - xM(old)) / xM	(new)│, the relative error of the estimate and check 
to see if this error is below a pre-specified tolerance. 

6. If the relative error is less than the pre-specified tolerance, you are done. If not, then go  

    back to step 2. 

 

Advantages: 

1. Always convergent 

2. The relative error can be controlled and determined 

Disadvantages: 

1. Convergence is slow 

2. The initial estimates need to bracket the root 



	

3. Choosing an initial guess too close to a root may result in needing many iterations to 
converge 

4.  Cannot find roots for some functions that don't change sign over any interval. For instance, 
a 

parabola f(x) = x2 + 1 is always > 0. 

5. This method could seek a singularity point as a root. 

When utilized correctly after each iteration the interval containing the real root will be 
decreased by one half of its size. This is continued until the maximum defined error is 
obtained. 

The Regula-Falsi Method 

The Regula Falsi Method, also known as the False Position Method, was developed because 
the Bisection Method converges at a fairly slow rate. As before, we assume that f(x0) and f(x1) 
have opposite signs. As an aside, it was found that when the two initial guesses do not bracket 
the root, convergence will still take place, depending upon the function being evaluated, even 
though several hundred iterations may be required. The Bisection Method uses the midpoint of 
the interval [x0, x1] as the next estimate. A better approximation is obtained if we find the point 
(x2, 0) where the secant line joining the points (x0, f(x0)) and (x1, f(x1)) crosses the x-axis. That 
is, a linear interpolation is performed between x1 and x0 to find the approximate root. To derive 
the iterative formula, write down two versions of the slope of the line: 

  
m =

f (x1)− f (x0 )
x1 − x0

 

where the points (x0, f(x0)) and (x1, f(x1)) are used and 

  
m =

0− f (x1)
x2 − x1

 

where the points (x2, 0) and (x1, f(x1)) are used. Solving for x2, we get the recursive formula: 

  
x2 = x1 −

f (x1) x1 − x0( )
f (x1)− f (x0 )

 

 

or, in general,  

  
xn+1 = xn −

f (xn ) xn − xn−1( )
f (xn )− f (xn−1) 	

To use the Regula Falsi Method: 

1. Obtain two starting guesses, xn and xn-1 such that f(xn)f(xn-1) < 0.  

2. Produce the next iterate xn+1 from the formula above 

3. Determine │ε │= │(xM	(new) - xM	(old)) / xM	(new)│, the relative error of the estimate and check  



	

     to see if this error is below a pre-specified tolerance. If required tolerance or maximum  

     iterates have been reached then stop. 

4. Otherwise continue as follows:  

a)    If f(xn+1) has the same sign as f(xn-1) redo step 2 above by assigning xn-1 = xn+1.  

b)    If f(xn+1) has the same sign as f(xn ) redo step 2 above by assigning xn = xn+1. 

Advantages: 

1.   Most times the Regula Falsi Method will converge faster than the Bisection Method.  

2.   Only one function is needed to perform the iterations, i.e., no derivatives of the function are  

      needed as in both the Newton-Raphson and Halley’s Methods. 

Disadvantages: 

1.    May converge slowly for functions with big curvatures.  

2.    Newton-Raphson may be still faster if we can apply it. 

The Secant Method 

The Secant Method is slightly different than the Bisection Method. It takes two initial guesses 
between which there is a change in sign, but, instead of bisecting the difference between them 
after each iteration, it takes the values of the function at the initial points and constructs a 
secant line connecting the two. Where this line crosses the x-axis is the next guess and will 
replace this initial value with the same sign and repeat the process. This method can be 
summarized in the following way: let xi-1 and xi be the initial guesses and let xi+1 be the next 
guess determined by the method:  

  
xi+1 = xi −

f (xi ) xi − xi−1( )
f (xi )− f (xi−1)

 

Using the Secant Method, we determine the root of f(x) = 0 as follows: 

1.   Initialize i = 0 

2.   Start with guesses x1 and x0 

3.   Use the formula above 

4.   Find │ε │= │(x1 – x0) / x1│, the relative error of the estimate and check to see if this error 

      is below a pre-specified tolerance. 

 5.   If the relative error is less than the pre-specified tolerance, you are done. If not, then go 
back to step 3 and determine:  

  
x2 = x1 −

f (x1) x1 − x0( )
f (x1)− f (x0 )

 



	

Advantages: 

1.  This method converges faster than Bisection Method 

2.   It does not require the use of the derivative of the function 

3.   The two initial guesses do not need to bracket the root 

4.   It requires the evaluation of only function as compared to the NRM requiring two, the  

      function and its derivative 

Disadvantages 

1. It may not converge  

2. There is no guaranteed error bound for the computed iterates.  

3. It is likely to have difficulty if f ʹ (α) = 0. This means the x-axis is tangent to the graph of 

    y = f(x) at x = α.   

Note: Both the Regula-Falsi and Secant Methods use a similar approach.in determining roots. 
The difference between the two approaches is what each method does with the each subsequent 
iterant once it’s determined. In the Regula-Falsi Method, we refine our range so that the root is 
always bracketed, as with the Bisection Method. In the Secant Method, we use the previous 
estimate plugged into the iteration formula to generate the value of the next iteration. 

The Newton-Raphson Method 

This method of determining the roots of a polynomial equation, f(x) = 0, has certain 
advantages over the Bisection Method. Whereas the initial guesses used to initiate the 
Bisection Method requires the guesses to not only bracket the root to be determined, but, its 
effectiveness wanes if the guesses are either too far or too close the root. In addition, as 
previously noted, the speed of convergence of the Bisection Method is slow. The Newton-
Raphson Method (NRM) requires only one guess and this guess has basically no restraints on it 
with regard to where it is located relative to the root to be determined. In addition and very 
importantly, the rate of convergence of the NRM is quadratic rather than linear. One potential 
drawback is that this method involves determining the derivative of the function.  

The NRM works like this: Let “a” be the initial guess and let “b” be the better guess. By NRM,   
b = a – (f(a)/f '(a)). Each successive iteration should bring us closer to the root of the function 
assuming this method produces convergence. Because Newton's Method has an evaluation 
with a derivative in the denominator, guesses close to where the derivative is equal to zero will 
not converge.     

Using the NRM, we find the root of the equation f(x) = 0 as follows: 

1. Given f(x), determine the first derivative f ʹ(x). 

2. Choose an initial guess x0  

3. Calculate x1 = x0 – (f(x0)/f ʹ(x0)  



	

4. Determine │ε │= │(x1 – x0) / x1│, the relative error of the estimate and check to see if this 

    error is below a pre-specified tolerance. 

5. If the relative error is less than the pre-specified tolerance, you are done. If not, then go back  

    to step 3 and determine x2 = x1 –  (f(x1)/f ʹ(x1)). 

Advantages: 

1. The method converges very quickly when it converges 

2. Only requires one initial input to start the method 

3. Initial guess is not restricted 

Disadvantages: 

1. Method may not converge 

2. Need to evaluate two functions 

 3. The first derivative of the function needs to be determined 

Halley’s Method 

Finally, for the sake of completeness, I will mention Halley’s Method. Edmond Halley (1656-
1742) discovered this method to determine the root of a continuous and differentiable 
polynomial function which has cubic convergence. Comparing this method to the others 
already discussed, the rate of converge is extremely fast. The iterative formula for this method 
is: 

  
xn+1 = xn −

2 f (xn ) ′f (xn )
2[ ′f (xn )]2 − f (xn ) ′′f (xn )

 

An interesting point needs to be made about the derivation of this method. When Halley wrote 
his paper describing this method in 1694, he apparently did not realize that his method 
involved derivatives or “fluxions” as he would have called them.  

Advantages: 

1. The major advantage of this method is its speed of convergence 

2. It only requires 1 estimate and this estimate does not need to be close to the actual root  

Disadvantages: 

1. A disadvantage is that both 1st and 2nd derivatives of the function need to be determined 
before the method could be applied.  

2. If the derivatives are equal to zero, the method will fail. 

 



	

Explanation and Application of the Vedic Method 

This method relies on Tirthaji’s method of Flag division or has he referred to it “The Crowning 
Gem” of Vedic Mathematics, the use of duplexes, triplexes and quadruplexes and the 
application of the “Vertically and Crosswise” technique. I will detail each step in the solution 
of                   x3 – 100 = 0. After this detailed solution, I will present the summary of the 
solutions for each of the 3 remaining equations I am solving. You will notice that for each 
significant figure in the answer, there will be at most 3 sets of calculations necessary.  

 

Solution of x3 – 100 = 0 

 

Step 1: Estimate the answer to this equation. It appears that x = 4 provides a good 
approximation to the answer. This value will become our value “a” to be used subsequently. 

Step 2: Determine the “multipliers” to be used in the solution of a cubic equation and plug-in 
the value “a.” At this point, a definition of “multiplier” is needed: 

Multipliers – the determination of “multipliers” is required in order to proceed with this 
approach. To develop the requisite multipliers, we apply the formula: 

fn = fn(x)/n!, where: 

fn is the nth multiplier 

fn(x) is the nth derivative of the equation to be solved 

n! is n factorial 

Once these multipliers are determined, the initial estimate “a” is substituted in. For the function 
f(x) = x2 – 100, the multipliers would be: 

f1 = 3x2/1! → 3(a2)/1!    

f2 =   6x/2! → 6(a)/2! 

f3 =     6/3! → 1 

Given that our initial estimate for “a” is 4, the multipliers will be: 

1st multiplier is 3a2 = 3(42) = 48 

2nd multiplier is 3a = 3(4) = 12 

3rd multiplier is 1 = 1 

Step 3: Set-up the solution as follows: 

  100   | 0  0  0  0  0 

48    | 12  1  0  0  0  

     4      . |  



	

Step 4: Subtract 43 from 100, which is 100 – 64 = 36 and put the result alongside the first entry 
to the right of the bar. The solution will look like this: 

  100   |         360  0  0  0  0 

48    | 12  1  0  0  0  

     4      . |  

 

Step 5: Divide the multiplier, 48, into 360 and put down the result and remainder: 

  100   |         360         720  0  0  0 

48    | 12  1  0  0  0  

     4      . |   6 

You will notice that 360 ÷ 48 = 7 with a remainder of 24. I indicated a quotient of 6 with a 
remainder of 72. The reason for this will become apparent in future steps as we try to avoid 
negative numbers. 

 Step 6: From this point forward, we will have a repeating sequence of steps: multiplication, 
subtraction and finally division. There is another set of concepts that need to be defined before 
we can proceed. The multiplication step from this point forward will involve the calculation of 
duplexes, triplexes and quadruplexes. I will denote these amounts by either a D, T, Q with a 
numerical subscript. These definitions are as follows: 

D1(a) = a2           

D2(ab) = 2(a)(b)         

D3(abc) = 2(a)(c) + b2  

T1(a) = a3 

T2(ab) = 3a2b  

T3(abc) = 3(a)(b2) + 3(a2)(c)  

Q1(a) = a4    

Q2(ab) = 4(a3)(b) 

Q3(abc) = 6(a2)(b2) + 6(a3)(c) 

For the derivation of these values, I would refer you to Kenneth Williams’ book entitled “The 
Crowning Gem” published in 2013. 

a) First we multiply the second multiplier, 12, by the duplex of 6, i.e. D1(6). The duplex of 6 is 
62 = 36. Therefore, our product will be (12)(36) = 432. 

b) Subtract this result from our prior result of 720, which is 288. 

c) Divide this last result of 288 by 48. Again, even though the result is 6 with no remainder, we 
choose to use a quotient of 4 with a remainder of 96. Our result will now look like this: 



	

    100   |         360         720         960  0  0 

48    | 12  1  0  0  0  

     4      . |   6  4 

You will notice that the amount to be subtracted tends to grow and this is the reason to 
generate a large remainder so that when the subtraction step occurs, the result will be positive. 

Now the cycle of multiply, subtract and divide is repeated with another decimal place being 
generated each time. 

Step 7: 

a) We now multiply the second multiplier, 12, by the duplex of 64, i.e. D2(64). The duplex of 
64 is (2)(6)(4) = 48. Therefore our product here will be (12)(48) which is 576 and add to it the 
product of 1 and the triplex of 6, i.e. T1(6). The triplex of 6 is 63 which is 216. The sum of 
these products will be 576 + 216 = 792. 

b) Subtract this result from our prior result of 960 which is 168. 

c) Divide this last result of 168 by 48. Again, even though the result is 3 with a remainder of 
24, we choose to use a quotient of 1 with a remainder of 120. Our result will now look like 
this: 

    100   |         360         720         960                  1200  0 
48    | 12  1  0  0  0  
     4      . |   6  4  1 
Step 8: 

a) We now multiply the second multiplier, 12, by the duplex of 641. The duplex of 641 is 
(2)(6)(1)+42 = 28. Therefore our product here will be (12)(28) which is 336 and add to it the 
product of 1 and the triplex of 64. The triplex of 61 is (3)(62)(4) which is 432. Finally, multiply 
the 4th multiplier, which is 0, by the first quadruplex of 6, Q1(6). This quadruplex is equal to 64 
which equals 1,296. The sum of these products will be 336 + 432 + 0 = 768. 

b) Subtract this result from our prior result of 1200 which is 432. 

c) Divide this last result of 432 by 48. Again, even though the result is 9 with no remainder, we 
choose to use a quotient of 6 with a remainder of 144 to avoid future negative subtractions.  

Our result will now look like this: 

    100   |         360         720         960                  1200        1440 
48    | 12  1  0  0  0  
     4      . |   6  4  1  6 
At this point, we have a solution to 4 decimal places.  

The solution to the remaining 3 equations are as follows: 

Solution to x4 – 100 = 0 

  100   |         190         820         1180                  3040        3390 
108    | 54          12  1  0  0  



	

     3      . |   1  6  2  3 
 
Solution to x3 + x2 + 3x -186 = 0 
 
 186   |         210         340         1000                  720         560 
88        | 16            1  0  0  0  
    5      . |   2            2  9  0  2 
    5      .              2            2  9  0 
 
For the sake of illustration, I will show the calculations of the multipliers, duplexes, triplexes 
and quadruplexes used in this solution: 

Assuming that our estimate of the root is 5, the multipliers will be: 

f1 = (3(a2) + 2(a) + 3)/1! → 3(52) + 2(5) + 3 = 88 

f2 = (6(a) + 2)/2! → 3(5) + 1 = 16 

f3 = 6/3! = 1 

D1(2) = 22 = 4 

D2(22) = (2)(2)(2) = 8 

D3(229) = (2)(2)(9) + 22 = 40 

T1(2) = 23 = 8 

T2(22) = 3(22)(2) = 24 

T3(229) = 3(2)(22) + 3(22)(9) = 132 

Q1(2) = 24 = 16 

Solution to x4 – 2x3 + 4x2 - 5x - 10 = 0 
 10   |          40          20                60                     10          100 
19   | 16            6  1  0  0  
    2      . |   2            2  1  0   2      .                                                                                     
    2                     1                   8  1  0 
 
	 	



	

Comparing Number of Arithmetic Operations to Produce Final Results  

	 	 	 	 	 	 	 	 	 	
Bisection Method 

 
Number of Arithmetic Operations 

% of Conventional 
Method* 

	 	 	 	 	 	 	 	  	f(x) = x3 - 100 
  

246 
   

10.57% 
 f(x) = x4 - 100 

  
309 

   
10.03% 

 f(x) = x3 + x2 +3x - 186 
 

390 
   

8.72% 
 f(x) = x4 - 2x3 + 4x2 -5x 

-10 
 

579 
   

5.18% 
 

          Regula-Falsi Method 
       

          f(x) = x3 - 100 
  

210 
   

12.38% 
 f(x) = x4 - 100 

  
763 

   
4.06% 

 f(x) = x3 + x2 +3x - 186 
 

210 
   

16.19% 
 f(x) = x4 - 2x3 + 4x2 -5x 

-10 
 

1194 
   

2.51% 
 

          Secant Method 
        

          f(x) = x3 - 100 
  

80 
   

32.50% 
 f(x) = x4 - 100 

  
96 

   
32.29% 

 f(x) = x3 + x2 +3x - 186 
 

96 
   

35.42% 
 f(x) = x4 - 2x3 + 4x2 -5x 

-10 
 

240 
   

12.50% 
 

          Newton-Raphson 
Method 

      
          f(x) = x3 - 100 

  
39 

   
66.67% 

 f(x) = x4 - 100 
  

39 
   

79.49% 
 f(x) = x3 + x2 +3x - 186 

 
38 

   
89.47% 

 f(x) = x4 - 2x3 + 4x2 -5x 
-10 

 
57 

   
52.63% 

 
          Halley's Method 

        
          f(x) = x3 - 100 

  
42 

   
61.90% 

 f(x) = x4 - 100 
  

42 
   

73.81% 
 f(x) = x3 + x2 +3x - 186 

 
54 

   
62.96% 

 f(x) = x4 - 2x3 + 4x2 -5x 
-10 

 
70 

   
42.86% 

  
         



	

 
 
Vedic Method 

        
          f(x) = x3 - 100 

  
26 

   
100.00% 

 f(x) = x4 - 100 
  

31 
   

100.00% 
 f(x) = x3 + x2 +3x - 186 

 
34 

   
100.00% 

 f(x) = x4 - 2x3 + 4x2 -5x 
-10 

 
30 

   
100.00% 

 
	 	 	 	 	 	 	 	* This column compares the number of steps of the Vedic Method number of steps of the 

traditional methods. For example, I compared the number of steps to solve f(x) = x3 – 100 for 
the Vedic Method, 26 steps, to the number of steps for the Bisection Method, 246 steps. That is 
26/246 = 10.57% 

Conclusions 

The purpose of this analysis was to determine if the solution of cubic and quartic equations 
would require less arithmetic operations using Vedic methods as compared to conventional 
iterative approaches. 

As indicated earlier in this paper, there are formula-based methods available to help solve 
cubic and quartic equations. Unfortunately, once the equation attains 3rd degree or higher, these 
formula-based approaches become complicated and very cumbersome. There are methods, i.e. 
Descartes Rule of Signs, the Rational Root Theorem and Synthetic Division explained earlier, 
that can assist in root determination as long as the solution is fairly simple. Once the order of 
the equation equals 3 or above, these approaches are not the methods of choice. Over the years, 
mathematicians have developed iterative methods that can be used to solve more complicated 
equations. These methods are not only computationally complicated, but, are also too tedious 
to work out by hand. With the advent of computers, the time it takes to use these iterative 
methods to solve equations has been greatly reduced.  

The five iterative methods that I examined in this paper can be divided into two categories: 
those requiring knowledge of calculus to apply and those that don’t. The first group of methods 
includes the Bisection Method, the Regula-Falsi Method and the Secant Method. The 2nd 
group, requiring a knowledge of calculus, consists of the Newton-Raphson Method and 
Halley’s Method.  

For each of these methods, I developed solutions to 4 equations: two 3rd degree and two 4th 

degree equations of varying complexity. I then used excel spreadsheets to determine the 
number of iterations to determine the roots to 4 decimal places. Based upon these spreadsheets 
I was able to determine the number of arithmetic operations necessary to arrive at their 
respective solutions.  

The Vedic Method was then used to determine the roots. I compared the number of steps that 
each method took to determine solutions for each of the equations to the Vedic Method and 



	

summarized them on the “Comparing Number of Arithmetic Operations to Produce Final 
Result” exhibit.  

With regard to the Bisection  and Regula-Falsi Methods, the simplicity of the methods were 
more than outweighed by the number of steps needed to arrive at solutions. Each method 
required hundreds of steps to attain the accuracy we wanted. In fact, the Regula-Falsi method 
required almost 1,200 arithmetic operations to arrive at the required accuracy when solving the 
more complicated 4th degree equation.  

The Secant Method did better than the previous methods requiring just fewer than 100 steps to 
solve the first 3 equations. In solving the more complicated 4th degree equation, the number of 
steps jumped to 240. 

In comparing the Newton-Raphson Method and Halley’s Method, both approaches required 
about the same number of steps to arrive at their respective solutions. These methods produced 
results more effectively than the prior approaches. The number of steps required varied 
between 38 – 70 to arrive at the requisite solutions. Both of these solutions did require an 
elementary knowledge of calculus to differentiate the equations for use in the method.  

The Vedic Method, as can be seen on the comparison, required substantially less steps to 
determine roots with the required accuracy. In fact, the Vedic Method was from 2 to almost 40 
times faster than the conventional methods.    

I believe that the results shown in this paper demonstrate the power that the Vedic Method has 
over traditional mathematical approaches to determine roots of non-linear equations. Even with 
the advent of the immense computational power of computers, if the number of calculations 
performed to arrive at an acceptable solution in a given problem is reduced dramatically by the 
use of Vedic methodologies, then the Vedic approach should be utilized.   
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