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Before I begin, to elaborate a little further on the sub-title, I will show you how to get even the 

decimal equivalents of these trig functions for the said angle. 

I like to play around with Vedic algorithms, because after awhile, I get deeper insights into the 

actual mathematics, which help me discover hitherto unknown tools. For this paper, I found that 

after much experimentation with adding and subtracting Vedic triples, I came up with even faster 

and more efficient methods to calculate any of the 6 trigonometric functions, without even 

needing triples operations. I was able to do this for 24 angles, each 15 degrees apart, from 

0o/360o to 345o. 

We need to see this field of knowledge as 4 separate angle categories, each with its own special 

algorithms. 

Category I:   The “Mandatory Knowledge” (M) Triples, i.e. the 45o right triangle, and the 

30o-60o-right triangle 

The 1-1-√2 triple for the 45o right triangle is based on the fact that if one acute angle is 45o, then 

so must be the other, since they are complementary to each other. This means the sides opposite 

these angles are congruent, since congruent base angles of any triangle generate equal opposite 

sides. This makes the right triangle here an isosceles one. So since the 2 legs are indeed 

congruent, we may as well give each leg the simplest number, 1. So with the Pythagorean 

Theorem, the hypotenuse must be √2. 

 



In the math world, some reinterpret this into the unit circle schema, where the hypotenuse is 1. 

So to keep the hypotenuse as a unit value, the sides must be divided by √2, making each leg 

1/√2. Because of the distaste by some for radicals in the denominator, each leg is multiplied by 

√2/√2, resulting in unit circle sides √2/2. 

So you might at times see the triple as, √2/2      √2/2       1, which gives you an instantaneous 

cosine and sine  

To better memorize the 30-60 right triangle triple, you could just remember that the height, or 

opposite side to the 30o angle is always ½ the hypotenuse. 

Hence y = 1, r = 2. i.e. 30o)   ---   1    2     Then we use a2 = c2 – b2 to solve the base x. 

 i.e. a2 = 22 – 12 = 3, then get the square root. So the first element of the triple is √3. 

So we have two triples: 30o as √3    1     2 and 60o as   1   √3     2. 

One remaining mystery: Why is sin 30o exactly  ½? For those old enough to remember; before 

there were calculators, we had those trig tables, with “sine”, “cosine”, and “tangent”, heading the 

columns, and every degree from 1 to 90, preceding the rows. Remember how each function with 

its degree had a mysterious looking 4-digit decimal approximation, each one with 4 complicated 

looking digits; all except for two: sin 30o and cos 60o each = exactly .5000.  Why were these two 

so easy and convenient, where all the other angle trig values were so abstruse-looking? 

We can derive the sin 30o = ½ thusly: 

Take an equilateral triangle (i.e. each vertex = 60o). Draw an angle bisector to an opposite base to 

form two 30o angles: 

 



 ΔABD ≅ ΔBCD    How do we know?   The SAS (side-angle-side proof) 

Side BD is shared by both triangles , i.e. the reflexive property. That is the first S. 

Angle ABD ≅ angle CBD: definition of angle bisector. That is the A. 

Side AB ≅ side BC: definition of equilateral Δ.  That’s the S on the other side of A. 

Since both these triangles are congruent, then their corresponding sides AD and DC must equal 

each other. But that means two equal parts within side AC, the other side of this equilateral 

triangle. Two equal parts means halves. So we see AD is half of AB, and DC is half of BC. Also 

angles ADB and CDB are right angles. We know this because since both triangles are congruent, 

and these adjacent corresponding angles make up a straight line segment, i.e. 180o, each must by 

90o. Thus, within each right triangle, we have a 30o angle causing its opposite side  (height in 

VM) to be half of its respective hypotenuse. 

Category 2:  The Quadrantal Angle (Q) Triples 

I am assuming most readers know the Vedic triples for these angles. However, there is a good 

reason to go over them again. There is a certain pattern to them that will make it easier to master 

my last category, the 15o offset angles. 

Note that the quadrantal angles are the only angle type where the right triangle disappears and 

collapses unto itself as a single line segment. Ex. As you go from 0o to 90o, imagine a shifting 

right triangle that gets higher and narrower as we go counter-clockwise.  

 

 



The vertical side or Vedic “height” is drawing closer and closer to the hypotenuse, as the latter 

itself converges onto the 90o vertical ray. Exactly at 90o, the vertical side, the hypotenuse, and 

the unit circle radius of 1 are all indistinguishable. It is now all vertical, with totally non-existent 

horizontal. Thus our triple for 90o or π/2 radians.   =   0    1    1. 

Notice that whenever one straight leg element is 1, the other element is 0. In preparation for a 

later angle category, a strong vertical means a weak horizontal, and vica versa. Here at π/2 

radians, we have a strong vertical and weak horizontal; actually a totally dominant vertical and 

non-existent horizontal. Without drawing the diagram, you can imagine why the Vedic triple for 

π radians or 180o must be -1   0    1. We have a totally dominant horizontal for element 1  (going 

left, hence negative), and a non-existent vertical or 0 for element 2. 

Indeed, even if you forget the memorization of the 4 quadrantal triples, just ask the following: 

a) Is it on the x-axis (horizontal dominant) or the y-axis (vertical dominant)? So you know if it’s 

the former x case, then the Vedic base must be 1 (absolute value for now) and the Vedic height 

must be 0. If the latter y case, then the Vedic height is | 1 | and the base is 0. 

b) Now for the sign of 1: if horizontal right (0o/360o) or vertical up (90o), it’s + for base or height 

respectively. If horizontal left (180o) or vertical down 270o), it’s – for base or height respectively. 

 

 



Category 3:  The RQ – reference angle and quadrant method 

This is explained more fully in my video 1 of the VM conference March 17-18, 2018. However, 

I can describe it briefly here. 

There are 9 angles beyond quadrant 1 whose triples don’t need Vedic addition or subtraction to 

solve. They each are either 30o, 45o or 60o away from the x-axis, the basis for calculating 

reference angles. We just make the triple for the reference angle, then adjust the sign(s) for the 

triple’s x and y based on the angle’s quadrant, and you’ve got the triple. 

Example 1 135o (or 3π/4 radians). Reference angle = 45o (or π/4). So our base triple is  1   1   √2 

Since 135o is in quadrant 2, we know the base (x value) is negative, and the height (y value) is 

positive. So the final triple for 135o = - 1    1   √2. And you can now figure your trig functions 

accordingly, for example, tan 3π/4(135o) = y/x = 1/-1 = -1. 

 

Example 2 330o (11π/6).     

Reference angle = 30o  so base triple is    √3    1     2 

Quadrant 4 means + for x and – for y  
so now it’s √3   - 1     2 
 
Example 3  sin 330o is y/r or simply -1/2  

 



Category 4:   The 15o Offset Method 

There are eight angles among the 24 angles that Vedic triples can address that have a special 

character. These are the ones that are 15o off from each of the 4 quadrantal angles as follows: 

345o and 15o, offset from 0o/360o 

75o and 105o, offset from 90o 

165o and 195o, offset from 180o 

255o and 285o, offset from 270o 

The purpose of this section is to show how to use deductive reasoning to find each triple without 

the need for any Vedic addition, subtraction, or half angle operations once one basic triple is 

established for 15˚. 

The triple for 15˚ can be found by subtracting the triple for 30˚ from the triple for 45˚ 

 

45˚
30˚

1 1 √2
√3 1 2

15˚ √3+1 √3−1 2√2

 

Every single one of these angles has an identical triple re: the number pair for each element. 

They differ solely by the sign preceding each number of the pair. 

The basic template for all of them is: 

       +/-√3  +/-1          +/-√3  +/-1           2√2 

            base                   height           hypotenuse    

Here are all 8 of them with their own triples. 

15o:    √3 + 1         √3 – 1          2√2 

75o:    √3 – 1         √3 + 1             “ 

105o: -√3 + 1         √3 + 1            “ 

165o: -√3 – 1         √3 – 1            “ 

195o: -√3 – 1        -√3 + 1          2√2 

255o:  -√3 + 1        -√3 – 1          “ 

285o:    √3 – 1       -√3 – 1          “ 

345o:    √3 + 1       -√3 + 1          “ 

 



These are all shown on the diagram below. 

 

Finding patterns 

The quadrant of the angle tells us the sign layout for the √3 term of the base and the height. The  

√3 of the base mirrors the sign of x for that quadrant, and the √3 of the height mirrors the sign of 

y for that quadrant. 

Thus: 

Q1:   from (+, +) gives us (√3…, √3…) 

Q2:   from (-, +)  gives us (-√3…, √3…) 

Q3:   from (-, -)   gives us (-√3 …,-√3…)   

Q4:   from (+, -)  gives us (√3… , -√3…)      

 



Check the above angles to confirm. 

Now for the sign of the 1 following the √3: 

Some angles are “strong horizontals”. Those are the ones offset from the x-axis.  i.e. 345o, 15o, 

165o, 195o     For the base, a strong horizontal going to the right has a +1, and going to the left 

has a – 1. 

For example, 165o is a strong negative horizontal, so its base has a – 1. And being in Q2, its full 

base is -√3 – 1. 

The other 4 angles are “strong verticals”, i.e. offset from the y-axis, 

i.e.  75o, 105o, 255o, 285o  For the height, a strong vertical going up gives us a + 1, and going 

down, a -1. 

Example 4 285o is a strong downward vertical, so its height has a -1. And being in Q4, the full 

height is -√3 – 1. 

A strong horizontal always has a weak vertical (it climbs only slightly up or down), and a strong 

vertical always has a weak horizontal (it shifts only slightly to the right or left). This means a 

strong base has a weak height, and a strong height has a weak base. The implications for the sign 

preceding the 1: it’s always opposite the intended direction. A weak base trying to go right will 

have a -1, or trying to go left will have a + 1. 

Example 5 255o, being a strong vertical, has a weak horizontal. It tries to go left, so its 1 is 

positive, the opposite of the intended direction. 

So the base for 255o is -√3 + 1   (Q3 for the √3 term) 

Its full triple is    -√3 + 1                   -√3 – 1                2√2 

                         Weak (-) base      Strong (-) height 

Example 6   345o, being a strong right horizontal, has a weak downward vertical. The height 

tries to go down, so it’s a + 1, the opposite of the intended direction. 

Being Q4, its height is -√3 + 1. 



The full triple is        √3 + 1                         -√3 + 1                       2√2 

                             Strong (+) base        Weak (-) height 

                                 (rightward)         (downward) 

Now let’s put this all together for some examples: 

Example 7 105o:    Q2, strong upward vertical, weak leftward horizontal 

So, being Q2,  the √3s are -√3…      √3… 

Strong upward vertical means height = √3 + 1, This means the weak leftward base is   -√3 + 1      

Full triple for 105o: -√3 + 1      √3 + 1      -        

Example 8 195o:  Q3, strong leftward horizontal, weak downward vertical 

The Q3 gives us to start:   -√3…        -√3… 

The strong leftward base gives us a -1  and the weak downward height gives us a +1.     

Triple for 195o:   -√3 – 1             -√3 + 1                     - 

With practice, this 15o offset method will become more and more natural and rapid. 

We are now ready to show the entire table of 24 Vedic triple angles, where each one can be 

calculated (or memorized) without the need for any Vedic triple operation. (This is not to be 

interpreted as an effort to do away with Vedic triple addition, subtraction, double or half angle 

algorithms because, without them, you cannot get to this next level. I only came upon my 

reference angle, quadrant method and the current 15o offset method after extensive experience 

with Vedic triple operations. We might call this entire enterprise guided self-discovery, a term 

coined by a great American math educator - Marilyn Burns, who believes when students with 

good fundamentals are guided by a skillful teacher, they can discover “on their own” new math 

insights.) 

Here is the legend: 

M: mandatory knowledge, like the triple for 45o   

Q; quadrantal angles, also mandatory (but could be approached from common sense) 



RQ: my reference angle – quadrant method  

15 OS: the 15o offset method 

Degrees Method  Degrees Method 

15 15 OS  195 15 OS 

30 M  210 RQ 

45 M  225 RQ 

60 M  240 RQ 

75 15 OS  255 15 OS 

90 Q  270 Q 

105 15 OS  285 15 OS 

120 RQ  300 RQ 

135 RQ  315 RQ 

150 RQ  330 RQ 

165 15 OS  345 15 OS 

180 Q  360/0 Q 
 

To even better memorize these patterns, there is a symmetry effect between each quadrantal 

angle inclusive: Q,  15 OS,  RQ,  RQ,  RQ, 15 OS, Q  (though in quadrant 1, we replace the RQ 

with M:  i.e.  Q,  15 OS,   M,   M,   M,   15 OS,  Q). 

Final Step – Manually calculating the decimal equivalent of a trig function’s value. 

So we finally have our trig function of our target angle. You will notice how in most cases, we 

have a mixture of square roots and integers. What I find irksome about this is: what does an 

expression like that mean to a rational person?  

For example, would we be able to think of a practical meaningful use for 
 

√6+ √2
4

?      

Wouldn’t it be more convenient to represent this value as an actual single number? 

 



I’ve come up with a simple, practical method to do just this – and never even use a calculator to 

help us. I notice that in all the 24 angles and their trig functions, only 3 radicals appear: 

√2,  √3, or √6. If we can memorize their mixed decimal value, we can basically calculate any 

permutation of them with integers. I choose 3 significant digits, i.e. the integer before the 

decimal and the two after. 

So: √2 ~ 1.41,     √3 ~ 1.73,         √6 ~ 2.45 

For good measure, we could also use:  √3/2 ~ 0.866, i.e. sin 60˚ and cos 30˚ and √2/2 ~ 0.707,   

i.e. sin and cos of 45˚ 

Here, the 3 significant digits are all to the right of the decimal. 

Example 9 cos 225˚ (5π/4)      

The RQ method gives us reference angle 45o and quadrant 3: -1    -1   √2 

Cosine of that: -1/√2 or better: -√2/2, which we memorized is -0.707. 

 

Example 10 tan 195o  We should recognize a 15o offset here: 

                (1) Q3:    -√3 …          -√3…         - 

                (2) Strong horizontal left, so x element: -√3 – 1 

                (3) Weak vertical down, so y element: -√3 + 1 

 

So tan 195o is  y/x which gives, 
 

−√3+1
−√3−1

× −√3+1
−√3+1

= 3− 2√3+1
2

= 2− √3  

2 – 1.73: bar number subtraction or just seeing it: 0.27 is our answer. 

Example 11 csc 75o     15 OS, Q1        √3…           √3… 

                             Strong vertical up:  so y element is √3 + 1 



                            Weak horizontal right so x element is √3 – 1  (with csc, x element not needed) 

                             Vedic triple     -     √3 + 1      2√2  

So, csc 75o is r/y which gives, 

 

2√2
√3+1

× √3−1
√3−1

= 2√6− 2√2
2

= √6− √2 = 2.45−1.41 = 1.04  

Okay – we are now ready to put this all together: 

Decide on Vedic triple method:  M (mandatory), Q (quadrantal), RQ (reference angle quadrant 

method), or 15 OS (15o offset method) 

After getting the triple based on an above method, get the trig function value as an integer, or 

mix of square root(s) and integer. 

If needed, calculate manually the decimal value. 

We will do 8 mixed cases:  (I will include radian equivalent of the M, Q and RQ angles) 

1. tan of 270o (3π/2)    Q angle, Vedic triple is 0   -1     1     tan is y/x = -1/0 = undefined    

(Actually you should know this from the tangent graph – i.e all odd π/2s are vertical asymptotes, 

i.e. undefined) 

2. sec of 30o  (π/6)  M angle    √3     1      2, actually since sec is reciprocal of cosine, we  

don’t   need y:  √3     -      2        sec is 2/√3   or 2/1.73. We could use flag division. 

But since  
2
√3 =

2√3
3 , the easier calculation is  2×1.73÷ 3 = 3.46 ÷ 3 = 1.15  

3. csc 330o (11π/6)  RQ method   ref angle 30o and Q4 (+,-)      -     -1      2   

This one is easy: r/y     =   -2 

4. cot  285o      15 OS method, Q4, strong vertical down, weak horizontal right 

                         Q4:  √3  …          -√3  …           - 

     Vertical added:  √3  …          -√3 – 1         - 



             Horizontal added:  √3 - 1          -√3 – 1        -   

So, cot is x/y which gives, 

 

√3−1
−√3−1

× −√3+1
−√3+1

= −3+ 2√3−1
2

= √3− 2 = 1.73− 2 = − 0.27  

5. cos π    Q angle of 180o       -1    0      1       easy: x/r =  -1/1 = -1 

6.  sin 240o  (4π/3)     RQ situation   ref angle of 60o and Q3 gives us: 

                                     -1     -√3        2        y/r = -√3/2     

We should have as memorized -0.866 or use simple short division. 

7. sec 165˚      15 OS case    Q2:   -√3…        √3… 

            strong horizontal left:  :   -√3  -1      -           2√2    (We don’t need y) 

Sec 165˚ is r/x  = 
 

2√2
−√3−1

× −√3+1
−√3+1

= −2√6+ 2√2
2

= − √6+ √2 = − 2.45+1.41 = −1.04  

8. tan 5π/6 or 150o      RQ method       30o at Q2       -√3        1        2 

  
tan is y / x = 1

−√3
= − √3

3
= − 1.73

3
= − 0.576  

These decimal and integer answers are much more meaningful than answers with square roots, 

and can more easily be used to solve real-life applications. 

Conclusion 

This approach, using symmetry to finding the triples and exact trigonometric values of 24 angles, 

extends student’s knowledge of trigonometry and unravels difficulties often experienced with 

angles beyond the first quadrant. The fact that these calculations can all be done without resort to 

calculators will be of considerable benefit to the millions of students, such as those in India and 

China and elsewhere in Asia where calculators are not used until university. 

	
	


