IAVM

Sample IVMO Intermediate Time allowed-1 Hour

1. $4.321+43.21+432.1+4321$

2. Draw a ring round the number below that is divisible by 18 .

834257
764522
427536
869365
647381
3.
683
$\times 996$
5. 7.5^{2}
7. Divide, leaving the remainder as a whole number.
$97 \quad 21311$
6. 47×49
8. Divide,
$113 \mid 25998$
9. 43^{3}
10. Find the square root of the perfect square, 5776.
11. 44×404
12. 3.2% of 25
13. 993^{2}
14. 52.17×2.823
15.

Convert $\frac{116}{125}$ to decimal.
16.

Convert the fraction, $\frac{7}{19}$, to decimal, correct to 9 decimal places.
17. Find the density of a lump of Protactinium that has a mass of 48.96 grams and a volume of $3.2 \mathrm{~cm}^{3}$.
19. Solve the simultaneous equations,

$$
\begin{array}{r}
11 x+3 y=15 \\
-13 x+6 y=30
\end{array}
$$

21. If $6 x-y=21$ and $6 y-x=14$, what is the value of $x-y$?
22. Solve by factorisation,

$$
5 x^{2}+17 x-12=0
$$

25. Find the equation of the straight line with gradient, 3 , and that passes through the point $(4,2)$.
26. Convert $0.32 \dot{5}$ to a fraction in lowest terms.
27. Solve,

$$
\frac{4 x}{5}-\frac{2 x}{3}=4
$$

22. Find the minimum value of the function,

$$
f(x)=x^{2}-8 x+23
$$

24. Given that $(x-2)$ is a factor of,

$$
f(x)=6 x^{3}-19 x^{2}+9 x+10
$$

find the solutions to $f(x)=0$.
26. Two lines have equations, $2 x+3 y=15$ and $5 x+4 y=13$.

What is the position of their point of intersection?
27. Find the equation of the straight line perpendicular to the line with equation, $3 x+5 y=23$ and which passes through the point $(1,5)$.
29. Expand and simplify,

$$
\left(x^{2}-5 x+3\right)\left(3 x^{2}+7 x-4\right)
$$

31. Simplify,

$$
\frac{3 x^{2}+2 x-8}{15 x^{2}-17 x-4}
$$

28. Find the equation of the straight line that passes through the points $(2,9)$ and $(1,2)$.
29. $4 x^{3}+8 x^{2}+9 x+10 \div(2 x+3)$
30. Solve,

$$
x+\frac{1}{x}=\frac{26}{5}
$$

33. Jamie wanted to multiply 238×479 using bar numbers (viculums) for large digits. He set out his calculation as shown on the right.

Draw circles around the places where he made mistakes.
$24 \overline{2}$
$\times \quad 5 \overline{2} \overline{1}$
$\underline{11,82082}$
117022
34. Exactly one of these equations is correct. Draw a circle round the correct one.

A $44^{2}+77^{2}=4477$
B $55^{2}+66^{2}=5566$
C $66^{2}+55^{2}=6655$
D $88^{2}+33^{2}=8833$
E $99^{2}+22^{2}=9922$
35. Which of the following is not a square?
A 1^{6}
B 2^{5}
C 3^{4}
D 4^{3}
E 5^{2}
37. 50003×52467
41. Over the course of numbering every page in a book, a mechanical stamp printed 2929 individual numbers. How many pages does the book have?
39. Express 85 as the difference of two square numbers that are integers.
43. The football has 12 pentagonal panels and 20 hexagonal panels. The panels are fixed together along their edges to form joins. How many joins are there?
38. $471845 \div 23$
40. The ratio of Angela's age to Bill's age is $2: 3$ and that of Bill's age to Charlie's age is $4: 7$. What is the ratio of Angela's age to Charlie's age?
36. Write the following fractions in order of size, starting with the smallest:

$$
\frac{1}{113} \quad \frac{2}{225} \quad \frac{4}{447} \quad \frac{2}{227}
$$

42. How many positive two-digit numbers are there whose square and cube both end in the same digit?
43. Pinocchio's nose is 5 cm long. Each time he tells a lie his nose doubles in length. After he has told nine lies his nose will be roughly as long as one of the following: (Draw a ring round the correct answer.)
A Domino
B Tennis racket
C Pool table
D Tennis court E Football pitch
44.

Two similar cones, A and B, have surface areas $900 \mathrm{~cm}^{2}$ and $8100 \mathrm{~cm}^{2}$, respectively.
If the volume of cone A is $1800 \mathrm{~cm}^{3}$, what is the volume of cone B ?
46. In the diagram, what is the sum of angles a, b, c and d ?

47. Roshni has the same number of brothers as she has sisters. Each one of her brothers has 50% more sisters than brothers.
How many children are in Roshni's family?
48. Five numbers are arranged in order from least to greatest.

$$
x \quad x^{3} \quad x^{4} \quad x^{2} \quad x^{0}
$$

Where does $-x^{-1}$ belong in the list above?
49. Work out the area of the shaded region, leaving your answer in terms of π. The 10 cm line is tangent to the inner circle.

50. How many squares are there?

IAVM

Sample IVMO Intermediate Solutions
 Time allowed - 1 Hour

1. $4.321+43.21+432.1+4321$
4.321
43.21
432.1

$$
\frac{+4321}{48_{1} 0_{1} 0.631}
$$

By one more than the one before
3.

$$
\begin{array}{r}
683-317 \\
\times 996-004 \\
\hline 6801268
\end{array}
$$

All from 9 and the last from 10
5.
$7.5^{2} \quad 56.25$
By one more than the one before
7. Divide, leaving the remainder as a whole number.

97	$213 / 16$
03	26 03 27
$219 / 73$	

All from 9 and the last from 10
2. Draw a ring round the number below that is divisible by 18 .

834257
By elimination and retention
764522
Only the last digits
427536
869365
647381
4.
$1756+756$
$\begin{array}{r}1756+7563 \\ \times 1003+003 \\ \hline 1761 / 268\end{array}$

All from 9 and the last from 10
6. 47×49 47-03

$$
\frac{\times 49-01}{2)} \frac{46 / 03}{2303}
$$

All from 9 and the last from 10
Proportionately
8. Divide,

113	$259 / 98$ $\overline{1} \overline{3}$ $\overline{2} \overline{6}$ $\overline{3} \overline{9}$ 000
$230 / 08$	

Transpose and apply
9. 43^{3}
$\begin{array}{llll}64 & 48 & 36 & 27\end{array}$
$96 \quad 72$

15	11	2	
79	5	0	7

By one more than the one before
Proportionately
11. 44×404

17776
Transpose and apply
13.
$993^{2} \quad 986049$
15. Convert $\frac{116}{125}$ to decimal.

$$
\frac{116}{125} \times \frac{8}{8}=\frac{928}{1000}=0.928
$$

17. Find the density of a lump of Protactinium that has a mass of 48.96 grams and a volume of $3.2 \mathrm{~cm}^{3}$.

$$
\text { 3. }{ }^{2} \begin{array}{|l}
4,8 ., 96 \\
15.30 \mathrm{~g} / \mathrm{cm}^{3}
\end{array}
$$

Vertically and crosswise
10. Find the square root of the perfect square, 5776.

Only the last digits
Product/sum Sum/product
12. 3.2% of 25
3.2% of $25=25 \%$ of $3.2=0.8$
Proportionately
14. 52.17×2.823

5217

$$
\frac{\times 2823}{14_{4} 7 \cdot{ }_{3}{ }_{4} 7_{6} 59_{2} 1}
$$

Vertically and crosswise
16. Convert the fraction, $\frac{7}{19}$, to decimal, correct to 9 decimal places.

$$
\begin{aligned}
& 0.05_{1} 263_{1}^{1} 1_{1} 51_{1}, 89 \ldots \\
& =0.052631579(9 \mathrm{dp})
\end{aligned}
$$

By one more than the one before
18. Convert $0.3 \dot{2} \dot{5}$ to a fraction in lowest terms.

$$
\begin{aligned}
& 1000 \times 0.3 \dot{2} \dot{5}=325.2 \dot{5} \\
& 10 \times 0.3 \dot{2} \dot{5}=3.2 \dot{5} \\
& \hline 990 \times 0.3 \dot{2} \dot{5}=322 \\
& 0.3 \dot{2} \dot{5}=\frac{322}{990}=\frac{161}{495}
\end{aligned}
$$

By elimination and retention
Proportionately
19. Solve the simultaneous equations,

$$
\begin{gathered}
11 x+3 y=15 \\
-13 x+6 y=30 \\
x=0, y=5
\end{gathered}
$$

When one is in ratio, the other is zero
21. If $6 x-y=21$ and $6 y-x=14$, what is the value of $x-y$?

$$
\begin{aligned}
& 7 x-7 y=7 \\
& x-y=1
\end{aligned}
$$

By addition and subtraction
23. Solve by factorisation,

$$
\begin{aligned}
& 5 x^{2}+17 x-12=0 \\
& \left(\begin{array}{cc}
5 & -3 \\
1 & 4
\end{array}\right) \quad(5 x-3)(x+4)=0 \\
& x=\frac{3}{5} \text { or }-4
\end{aligned}
$$

Vertically and crosswise
When one is in ratio, the other is zero
25. Find the equation of the straight line with gradient, 3 , and that passes through the point $(4,2)$.

$$
\begin{aligned}
& m x-y=m x_{1}-y_{1} \\
& 3 x-y=10
\end{aligned}
$$

Specific and general
22. Find the minimum value of the function,

$$
f(x)=x^{2}-8 x+23
$$

By completion and non-completion
24. Given that $(x-2)$ is a factor of,

$$
f(x)=6 x^{3}-19 x^{2}+9 x+10
$$

find the solutions to $f(x)=0$.
20. Solve,

$$
\begin{array}{r}
\frac{4 x}{5}-\frac{2 x}{3}=4 \\
\frac{2 x}{15}=4, \quad x=30
\end{array}
$$

Vertically and crosswise

$$
x^{2}-8 x+23=(x-4)^{2}+7
$$

$$
\begin{array}{r|r}
x-2 \\
+2 & \begin{array}{r}
6 x^{3}-19 x^{2}+9 x+10 \\
12 x^{2}-14 x-10
\end{array} \\
6 x^{2}-7 x-5 / 0
\end{array}
$$

$$
\text { Minimum }=7
$$

$$
\left(\begin{array}{cc}
3 & -5 \\
2 & 1
\end{array}\right)(3 x-5)(2 x+1)(x-2)=0
$$

$$
x=\frac{5}{3},-\frac{1}{2} \text { or } 2
$$

Transpose and apply
26. Two lines have equations, $2 x+3 y=15$ and $5 x+4 y=13$.
What is the position of their point of intersection?

$$
\begin{aligned}
& x=\frac{3 \times 13-4 \times 15}{3 \times 5-2 \times 4}=\frac{-21}{7}=-3 \\
& y=\frac{5 \times 15-2 \times 13}{7}=\frac{49}{7}=7
\end{aligned}
$$

Transpose and apply
27. Find the equation of the straight line perpendicular to the line with equation, $3 x+5 y=23$ and which passes through the point $(1,5)$.

$$
5 x-3 y=-10
$$

Transpose and apply
Specific and general
29. Expand and simplify,

$$
\begin{aligned}
& \left(x^{2}-5 x+3\right)\left(3 x^{2}+7 x-4\right) \\
& x^{2}-5 x+3 \\
& \frac{3 x^{2}+7 x-4}{3 x^{4}-8 x^{3}-30 x^{2}+41 x-12}
\end{aligned}
$$

Vertically and crosswise
31. Simplify,

$$
\begin{gathered}
\frac{3 x^{2}+2 x-8}{15 x^{2}-17 x-4} \\
\frac{(3 x-4)(x+2)}{(3 x-4)(5 x+1)}=\frac{x+2}{5 x+1}
\end{gathered}
$$

Proportionately
33. Jamie wanted to multiply 238×479 using bar numbers (viculums) for large digits. He set out his calculation as shown on the right.

Draw a circles around the places where he made mistakes.
34. Exactly one of these equations is correct.

Draw a circle round the correct one.
A $44^{2}+77^{2}=4477$
B $55^{2}+66^{2}=5566$
C $66^{2}+55^{2}=6655$
Only the last digits
28. Find the equation of the straight line that passes through the points $(2,9)$ and $(1,2)$.

$$
7 x-y=5
$$

Transpose and apply
Product of the means
minus product of the extremes
30. $4 x^{3}+8 x^{2}+9 x+10 \div(2 x+3)$

$$
\begin{array}{r|r}
2 x+3 & 4 x^{3}+8 x^{2}+9 x+10 \\
-3 & -6 x^{2}-3 x-9 \\
2 x^{2}+x+3 / 1
\end{array}
$$

Transpose and apply
32. Solve,

$$
\begin{array}{r}
x+\frac{1}{x}=\frac{26}{5} \\
\frac{26}{5}=5 \frac{1}{5}, \quad x=5 \text { or } \frac{1}{5}
\end{array}
$$

By inspection
35. Which of the following is not a square?
A 1^{6}

D 4^{3}
E 5^{2}

By inspection
37. 50003×52467

$$
\begin{array}{r}
50003+0003 \\
\times 52467+2467 \\
\hline 2552470 / 7401 \\
\hline 26235 / 7401
\end{array}
$$

Proportionately
All from 9 and the last from 10
39. Express 85 as the difference of two square numbers that are integers.

$$
\begin{aligned}
85 & =5 \times 17 \\
& =(11-6)(11+6) \\
& =11^{2}-6^{2}
\end{aligned}
$$

By addition and subtraction
36. Write the following fractions in order of size, starting with the smallest:

$$
\frac{1}{113} \quad \frac{2}{225} \quad \frac{4}{447} \quad \frac{2}{227}
$$

$$
\frac{4}{452} \quad \frac{4}{450} \quad \frac{4}{447} \quad \frac{4}{454}
$$

$$
\frac{2}{227} \quad \frac{1}{113} \quad \frac{2}{225} \quad \frac{4}{447}
$$

Proportionately
38. $471845 \div 23$

$$
\frac{2^{3} \lcm{47_{1} 1_{1} 8,4 /{ }_{1} 5}}{20515 / 0}
$$

Vertically and crosswise
40. The ratio of Angela's age to Bill's age is $2: 3$ and that of Bill's age to Charlie's age is $4: 7$. What is the ratio of Angela's age to Charlie's age?

$A: B$	$B: C$
$2: 3$	$4: 7$
$8: 12$	$12: 21$
$8: 21$	

Proportionately
41. Over the course of numbering every page in a book, a mechanical stamp printed 2929 individual numbers. How many pages does the book have?

$$
\begin{array}{ll}
1 \rightarrow 9 & =9 \text { digits } \\
10 \rightarrow 99 \quad=180 \text { digits } \\
100 \rightarrow 999 \quad=2700 \text { digits } \\
9+180+2700=2889, \quad 2929-2889=40 \\
40 \div 4=10 . \quad 999+10=1009 \text { pages }
\end{array}
$$

Transpose and apply
42., How many positive two-digit numbers are there whose square and cube both

Last digits of squares	1	4	9	6	5	6	9	4	1	0
Last digits of cubes	1	8	7	4	5	6	3	2	9	0

Last digit 5, 9 numbers, last digit 6,9 numbers, last digit 1,9 numbers, last digit 0,9 numbers
Only the last digits Total, 36
43. The football has 12 pentagonal panels and 20 hexagonal panels. The panels are fixed together along their edges to form joins. How many joins are there?

$$
\frac{12 \times 5+20 \times 6}{2}=90 \quad \text { By inspection }
$$

44. Pinocchio's nose is 5 cm long. Each time he tells a lie his nose doubles in length. After he has told nine lies his nose will be roughly as long as one of the following: (Draw a ring round the correct answer.)
A Domino
B Tennis racket
C Pool table

E Football pitch

$$
5 \times 2^{9}=2560 \mathrm{~cm}=25.6 \text { metres } \quad \text { Proportionately }
$$

45. Two similar cones, A and B, have surface areas $900 \mathrm{~cm}^{2}$ and $8100 \mathrm{~cm}^{2}$, respectively.

If the volume of cone A is $1800 \mathrm{~cm}^{3}$, what is the volume of cone B ?
$\mathrm{ASF}=1: 9, \mathrm{LSF}=1: 3, \mathrm{VSF}=1: 27$
$27 \times 1800=486,000 \mathrm{~cm}^{3}$
46. In the diagram, what is the sum of angles a, b, c and d ?

$$
\begin{aligned}
& a+b=110^{\circ}, \quad c+d=110^{\circ} \\
& a+b+c+d=220^{\circ}
\end{aligned}
$$

By inspection

47. Roshni has the same number of brothers as she has sisters. Each one of her brothers has 50% more sisters than brothers.
How many children are in Roshni's family?

$$
\begin{aligned}
& x+1=1.5(x-1) \\
& x=5, \text { Total is } 11
\end{aligned} \quad \text { Transpose and apply }
$$

48. Five numbers are arranged in order from least to greatest.

$$
\begin{array}{lllll}
x & x^{3} & x^{4} & x^{2} & x^{0}
\end{array}
$$

Where does $-x^{-1}$ belong in the list above?

$$
\text { Let } x=-\frac{1}{2}
$$

Transpose and apply

$$
\begin{aligned}
& \begin{array}{lllll}
-\frac{1}{2} & -\frac{1}{8} & \frac{1}{16} & \frac{1}{4} & 1
\end{array} \\
& -\frac{1}{-\frac{1}{2}}=2 \text {, belongs at the end }
\end{aligned}
$$

49. Work out the area of the shaded region, leaving your answer in terms of π. The 10 cm line is tangent to the inner circle.
$R^{2}-r^{2}=5^{2}$
Difference in areas $=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)=25 \pi$

Transpose and apply

50. How many squares are there?

51
By elimination and retention

