
APPLICATION	OF	VEDIC	MATHEMATICS	IN	HIGH	SPEED	SYSTEM	–	A	SURVEY	

Raymond	Austn	

ABSTRACT:	

A	system’s	performance	is	determined	by	the	performance	of	a	multiplier.	It	is	a	key	component	of	
many	high-performance	systems	like	microprocessors,	digital	signal	processors	etc.	It	is	the	slowest	
element	in	the	system,	and	consumes	a	major	storage	area.	Hence,	optimizing	the	speed	and	the	
storage	area	of	the	multiplier	is	critical.	

Multiplication	is	the	most	basic	and	frequently	used	operation	in	the	CPU,	and	forms	a	basis	for	other	
complex	operations	such	as	convolution,	discrete	Fourier	transform,	fast	Fourier	transforms	etc.	It	
becomes	imperative	to	have	faster	arithmetic	unit	to	match	the	increasing	need	for	faster	clock	
frequency.	Traditional	methods	like	booth,	array	method,	carry	save,	Wallace	tree	etc.		used	for	
arithmetic	operations	takes	longer	time	for	processing.	Multiplier	architecture	based	on	these	methods	
are	not	very	efficient	in	terms	of	speed,	power	and	area.	

Software	Quality	Indexes	[1]	is	a	part	of	requirement	document	to	achieve	software	quality.	McCall’s	
quality	factors	model	deals	with	the	requirements	that	directly	affect	the	daily	operation	of	the	
software.		

Vedic	Mathematics	[2]	is	a	system	or	a	set	of	strategies	to	solve	a	range	of	mathematical	problems	
covering	almost	all	branches	of	mathematics	and	is	considered	as	India’s	gift	to	the	world.	The	Vedic	
Sutras	can	be	applied	to	multiplex	problems	involving	many	mathematical	operations.	The	application	of	
sutras	saves	a	lot	of	time	and	effort	in	solving	problems,	when	compared	to	conventional	methods.		

The	study	presents	an	extensive	survey	on	features	of	the	Vedic	multipliers	based	on	the	research	
papers.	Furthermore,	association	of	these	features	to	the	software	quality	indexes	are	also	presented.	
Implementation	of	appropriate	sutras	results	in	speed	improvement,	accuracy,	reduction	of	power	
consumption,	complexity	and	area.	

	

INTRODUCTION:	

Computational	arithmetic	operations	like	multiplication,	division,	square,	square	root,	cubing,	reciprocal	
and	other	basic	operations	play	a	vital	role	in	the	field	if	digital	signal	processing	(DSP),	image	
processing,	computer	graphics,	cryptography	etc.	All	these	operations	are	usually	implemented	in	
software,	using	hardware.	With	the	advancement	of	technology,	computers	keep	getting	faster;	there	
are	always	new	applications	that	need	more	processing	speed	than	before.	Examples	of	applications	
include	real-time	video	stream	encoding	and	decoding,	real-time	biometric	(face,	retina,	finger	print)	
recognition,	military	aerial	and	satellite	surveillance.	To	meet	the	demand	of	these	new	applications,	
there	is	a	need	to	develop	algorithms	for	accelerating	applications	on	commercial	hardware.			

A	system’s	performance	is	determined	by	the	performance	of	a	key	component	multiplier	due	to	the	
fact	of	being	the	slowest	element	in	the	system.	Furthermore,	it	is	also	the	most	area	consuming.	Hence,	
optimizing	the	speed	and	area	of	the	multiplier	is	a	major	design	issue.	Multiplication	is	the	most	basic	
and	frequently	used	operation	in	the	CPU,	forms	a	basis	for	other	complex	operations	such	as	

convolution,	discrete	Fourier	transform,	fast	Fourier	transforms	etc.	A	CPU	devotes	considerable	
amount	of	processing	time	in	performing	arithmetic	operations.	Two	important	parameters	associated	
with	multiplication	algorithms	are	latency	and	throughput.	Latency	is	the	“real	delay	of	computing	a	
function”.	Throughput	is	a	measure	of	“how	many	computations	can	be	performed	in	a	given	period	of	
time”.	It	becomes	imperative	to	have	faster	arithmetic	unit	to	match	the	increasing	need	for	faster	clock	
frequency.	Traditional	method	used	for	arithmetic	operations	takes	longer	time	for	processing.	These	
methods	include	booth,	array	method,	carry	save,	Wallace	tree	etc.	Multiplier	architecture	based	on	
these	methods	are	not	very	efficient	in	terms	of	speed,	power	and	area.	

Vedic	Mathematics	is	a	system	or	a	set	of	strategies	to	solve	a	range	of	mathematical	problems	covering	
almost	all	branches	of	mathematics	and	is	considered	as	India’s	gift	to	the	world.	Vedic	Mathematics	
was	compiled	by	Sri	Bharati	Krsna	Tirthaji,	Jagadguru	Sankaracharya	of	Puri	(March	1884-	February	
1960).	It	includes	sixteen	main	formulae	(sutras)	and	fourteen	corollaries	(up-sutras	or	sub-sutras)	from	
the	Atharva	Veda.	It	is	important	to	note	that	these	formulae	are	not	found	in	the	present	editions	of	
Atharva	Veda.	The	Vedas,	the	scriptures	are	the	sources	of	all	knowledge	and	of	all	sciences.	The	vedic	
sutras	can	be	applied	to	multiplex	problems	involving	a	large	number	of	mathematical	operations.	The	
application	of	sutras	saves	a	lot	of	time	and	effort	in	solving	problems,	when	compared	to	formal	
methods.	

Software	Quality	Indexes	is	a	part	of	requirement	document	to	achieve	software	quality.	McCall’s	quality	
factors	model	deals	with	the	requirements	that	directly	affect	the	daily	operation	of	the	software.	The	
McCall’s	factor	model	provides	a	practical,	up-to-date	method	for	classifying	software	requirements.		

The	study	presents	an	extensive	survey	on	features	of	the	Vedic	multipliers	based	on	the	research	
papers.	Furthermore,	association	of	these	features	to	the	software	quality	indexes	are	also	presented.	
Implementation	of	appropriate	sutras	results	in	speed	improvement,	accuracy,	reduction	of	power	
consumption,	complexity	and	area.	The	study	is	organized	as	vedic	sutras,	vedic	multiplier	design,	
McCall’s	factor	model,	surveyed	designs	associating	each	of	their	features	to	software	quality	factors	
and	the	conclusions.	

	

VEDIC	SUTRAS:		

The	lexical	meaning	of	Sutra	is	“thread”,	“string”,	“a	key”	or	“a	formula”.	Here	the	last	two	meanings	are	
applicable.	The	sutras	are	single	line	phrases	in	Sanskrit.	The	knowledge	of	Sanskrit	language	is	not	
required	since	they	are	well	translated	and	are	easy	to	understand	and	remember.	

Vedic	Mathematics	has	sixteen	main	formulae	(sutras)	and	fourteen	corollaries	(up-sutras	or	sub-sutras).	
They	are	listed	in	the	tables	below:	

	

	

	

	

	

SUTRAS:	

	

	

	SUB-SUTRAS:	

	

	

	

	

VEDIC	MULTIPLIER	DESIGN:	

Urdhvatiryagbhyam	Sutra:	The	Sanskrit	term	means	“Vertically	and	Crosswise”.	This	is	a	general	
formula	applicable	to	all	types	of	multiplication	and	also	of	division	of	a	large	number	by	another	large	
number.	The	uniqueness	of	this	sutra	is	that	partial	product	generation	and	addition	can	be	done	
simultaneously	at	the	same	time.	Since	there	is	a	parallel	generation	of	partial	products	and	their	sums,	
the	processor	becomes	independent	of	the	clock	frequency.	The	advantage	here	is	that	parallelism	
reduces	the	need	processors	to	operate	at	increasingly	high	clock	frequencies.	A	high	clock	frequency	
will	result	in	increased	processing	power	and	will	lead	to	increased	power	dissipation	resulting	in	higher	
device	operating	temperature.		All	the	demerits	associated	with	the	increase	in	power	dissipation	can	be	
negotiated	by	employing	vedic	multiplier.	Since	it	is	faster	and	efficient	its	layout	has	a	quite	regular	
structure.	Due	to	its	regular	structure	it	can	be	realized	easily	in	a	silicon	chip.																																																									

The	multiplication	scheme	can	be	explained	by	the	following	example	as	shown	below:	

	

Line	diagram	for	multiplication	of	two	4-bit	numbers	

	

Line	diagram	for	multiplication		

	

	

Multiplication	of	two	numbers	using	Urdhvatiryagbhyam	Sutra	

	

Nikhilam	navatasscaramam	dastah	Sutra:	The	Sanskrit	term	means	“All	from	9	and	the	last	from	10”.	
The	sutra	can	be	efficaciously	applied	in	multiplication	of	numbers,	which	are	nearer	to	base	like	10,	
100,1000	etc.		The	numbers	to	be	multiplied	can	be	either	less	or	more	than	the	base	considered	(one	of	
them	of	both),	however	both	the	numbers	should	have	one	common	base.		The	difference	between	the	
number	and	the	base	is	the	deviation	which	be	either	positive	or	negative.	The	multiplication	procedure	
using	nikhilam	sutra	involves	minimum	number	of	steps	in	computation,	reducing	the	space	area,	saving	
more	time	for	computation.	An	example	of	nikhilam	sutra	is	illustrated	below.	

	

Nikhilam		sutra	illustration	

Paravartya	Yojayet	Sutra:		The	Sanskrit	term	translated	into	English,	says	“Transpose	and	Apply”.	This	
method	is	related	to	the	Chinese	remainder	theorem	and	the	Horner’s	rule	of	the	synthetic	division.	An	
example	of	Paravartya	Yojayet	sutra	is	illustrated	below.	

	

	

Paravartya	Yojayet	sutra	illustration		

	

Gunakasamuchayah	Sutra:	The	Sanskrit	term	translated	into	English,	says	“All	the	multipliers”.	The	sutra	
means	the	factors	of	the	sum	is	equal	to	the	sum	of	the	factors.	It	means	the	product	of	the	sum	is	equal	
to	the	sum	of	the	coefficients	in	the	product.	i.e.	Sc	of	the	product=	Product	of	the	Sc	(in	factors).	This	
sutra	is	useful	in	verifying	the	correctness	of	the	obtained	answes	in	multiplication,	division	and	
factorization.	This	rule	holds	good	for	cases	of	cubics,	biquadratics	etc.																																															
Example:																																																																																																																																																																																	
(x+1)	(x+2)	(x+3)	=	x3	+	6x2	+	11x	+	6																																																																																																																																																																																																																																																																																																																	
2*3*4	=	1	+	6	+	11	+	6																																																																																																																																																																			
=	24.	Thus	verified.	

	

	

McCall’s	FACTOR	MODEL:	

Software	Quality	Factors	(Indexes)	define	the	broad	spectrum	of	software	quality	requirements	and	is	a	
part	of	requirement	document	to	achieve	software	quality.	In	order	to	achieve	satisfaction	of	the	users,	
it	is	expected	that	individuals	defining	software	requirements	refer	to	each	factor	and,	accordingly,	
examine	the	need	to	in	cooperate	the	respective	requirements	in	their	requirement	documents.	Due	to	
differences	among	software	projects,	not	all	the	factors	can	be	represented	in	all	the	requirements	
documents.	Besides,	unable	to	develop	software	that	meets	simultaneously	all	indexes	of	quality.	This	is	
due	to	problems	of	cost	and	time	required	to	develop	software	that	meets	every	quality	index	and	
because	some	of	the	indexes	contradict	each	other.	E.g.	Efficiency,	Flexibility	and	Portability	reduce	
software	reliability.	Flexibility,	Maintainability	may	decrease	efficiency.	

McCall’s	quality	factors	model	deals	with	the	requirements	that	directly	affect	the	daily	operation	of	the	
software.	The	McCall’s	factor	model	provides	a	practical,	up-to-date	method	for	classifying	software	
requirements.	McCall’s	factor	model	classifies	all	software	requirements	into	11	software	quality	
factors.	The	11	factors	are	grouped	into	three	categories	–	product	operation,	product	revision	and	
product	transition-	as	follows:	

• Product	operation	factors:	Correctness,	Reliability,	Efficiency,	Integrity,	Usability.	
• Product	revision	factors:	Maintainability,	Flexibility,	Testability.	
• Product	transition	factors:	Portability,	Reusability,	Interoperability.	

According	to	McCall’s	model,	five	software	quality	factors	are	included	in	the	product	operation	
category,	all	of	which	deal	with	requirements	that	directly	affect	the	daily	operation	of	the	software.	The	
table	presents	factors,	sub-factors	and	definitions	suggested	by	McCall’s	model:																																																																																																																																																																								

McCall’s	Quality	
Categories	

S/W	Quality	
Factors	

S/W	Sub-Factors	 Definition	

Product	Operation	 Correctness	 Accuracy	
Completeness	
Up-to-dateness	
Availability	(response	time)	
Coding	and	documentation	
guidelines	compliance	
(consistency)	

Extent	to	which	a	program	
satisfies	its	specification	and	
fulfills	the	users	objectives.

The	ability	of	the	software	to	
produce	output	given	an	
input	and	the	extent	to	which	
it	meets	the	defined	
requirements.	

Reliability	 System	reliability	
Application	reliability	
Computational	failure	
recovery	
Hardware	failure	recovery	

Extent	to	which	a	program	
can	be	expected	to	perform	
its	intended	function	with	
required	precision.	
Failures	to	provide	service.	
Maximum	allowed	software	
failure	rate.	
Refer	to	entire	system	or	one	
or	more	of	its	separate	
functions.	

Efficiency	 Efficiency	of	processing	
Efficiency	of	storage	
Efficiency	of	
communication	
Efficiency	of	power	usage	
(for	portable	units)	

The	amount	of	computing	
resources	and	code	required	
by	a	program	to	perform	a	
function.		
Deal	with	the	hardware	
resources	needed	to	perform	
all	the	functions	of	the	
software	system	in	
conformance	to	all	other	
requirements.	

Integrity	 Access	control	
Access	audit	

Extent	to	which	access	to	
software	or	data	by	
unauthorized	persons	can	be	
controlled.	
Deal	with	the	software	
system	security-requirements	
to	prevent	access	to	
unauthorized	persons.	

Usability	 Operability	
Training	

	Effort	required	to	learn,	
operate,	prepare	input,	and	
interpret	output	of	a	
program.	
The	extent	to	which	the	
program	is	easy	to	use	and	its	
tolerance	level	of	user	errors.
Deal	with	the	scope	of	staff	
resources	needed	to	train	a	
new	employee	and	to	operate	
the	software	system.	

Product	Revision	 Maintainability	 Simplicity	
Modularity	
Self-descriptiveness	
Coding	and	documentation	
guidelines	compliance	
(consistency)	
Document	accessibility	

Effort	required	to	locate	and	
fix	an	error	in	an	operational	
program.	
The	efforts	needed	by	the	
users	and	maintenance	
personnel	to	identify	the	
reasons	for	software	failures,	
to	correct	the	failures	and	to	
verify	the	success	of	the	
corrections.			

Flexibility	 Modularity	
Generality	
Simplicity	
Self-descriptiveness	
	

Effort	required	to	modify	an	
operational	program.		

The	capabilities	and	efforts	
required	to	support	adaptive	
maintenance	activities	are	
covered	by	the	flexibility	
requirements.	

Testability	 User	testability	
Failure	maintenance	
testability	
Traceability		

Effort	required	to	test	a	
program	to	insure	it	performs	
its	intended	function.	
Deal	with	the	testing	of	an	
information	system	as	well	as	
its	operation.	

Product	Transition	 Portability	 Software	system	
independence	
Modularity	
Self	descriptive	

Effort	required	to	transfer	a	
program	from	one	hardware	
configuration	and/or	
software	environment	to	
another.	
Adaption	of	a	software	
system	to	other	
environments	consisting	of	
different	hardware,	different	
operating	systems,	and	so	
forth.	

Reusability	 Modularity		
Document	accessibility	
Software	system	
independence	
Application	independence	
Self	descriptive	
Generality	
Simplicity	

Extent	to	which	a	program	
can	be	used	in	other	
applications	–	related	to	the	
packaging	and	scope	of	the	
functions	that	programs	
perform.	
Deal	with	the	use	of	software	
modules	originally	designed	
for	one	project	in	a	new	
software	project	under	
development.	

Interoperability	 Commonality	
System	compatibility	
Software	system	
independence	
Modularity	

Effort	required	to	couple	one	
system	with	another.	
Focus	on	creating	interfaces	
with	other	software	systems	
or	with	other	equipment	
firmware.	

	

	

	

	

SURVEYED	DESIGNS:	

Honey	Durga	Tiwari	et.al	[3]	developed	a	multiplier	and	square	architecture	for	low	power	and	high	
speed	applications.	They	used	Urdhva	Tiryakbhyam	and	Nikhilam	sutras	efficiently	for	multiplication	of	
two	large	numbers	by	reducing	it	to	the	multiplication	of	two	small	numbers.	The	FPGA	implementation	
of	the	proposed	design	is	more	efficient	in	terms	of	space	(area)	and	delay	time	compared	to	the	
conventional	booth	and	array	multipliers	design.	

M	Ramalatha	et.al	[4]	designed	high	speed	energy	efficient	ALU	using	Urdhva	Tiryakbhyam	sutra.	The	
designed	high	speed	multiplier	helps	coprocessor	which	reduces	load	of	processor.	They	showed	that	
application	of		Urdhva	Tiryakbhyam	sutra	reduced	unwanted	multiplication	and	produces	intermediate	
results	parallely.	The	optimized	vedic	multiplier	designed	was	efficient	having	advantages	–	high	speed,	
less	complexity,	decreased	delay	and	consuming	less	area.	

Devika	Jaina	et.al	[5]	proposed	a	design	for	multiplier	accumulator	unit	(MAC)	applying	Urdhva	
Tiryakbhyam	sutra.	The	algorithm	was	implemented	in	VHDL.	Their	approach	was	compared	with	the	
modified	booth	Wallace	multiplier	and	high	speed	vedic	multiplier.	Their	approach	was	found	to	be	
highly	efficient	in	terms	of	speed	(reduced	delay).	It	can	be	realized	easily	on	silicon	due	to	regular	and	
parallel	structure.			

Akhalesh	K.	Itawadiya	et.al	[6]	proposed	designing	Digital	Signal	Processing	(DSP)	operations	using	
multiplication	in	these	operations	e.g.	convolution,	correlation.	A	fast	computation	of	DSP	operations	of	
two	finite	length	sequence	was	implemented	using	Urdhva	Tiryakbhyam	sutra	for	multiplication.	They	
implemented	these	operations	in	MATLAB	with	single	GUI	window.		Their	approach	requires	less	
processing	time	(average	time	in	micro	seconds)	as	compared	to	inbuilt	functions	of	MATLAB	(average	
time	in	mili	seconds).	

Sushma	R	Huddar	et.al	[7]	identified	the	need	of	high	speed	cryptographic	algorithm	used	in	secure	
transactions.	In	order	to	meet	this	requirement,	they	developed	an	efficient	architecture	for	performing	
the	mix	columns	and	inverse	mix	columns	operation,	considered	as	a	major	operation	in	the	Advanced	
Encryption	Standard	(AEC)	method	of	cryptography.	The	Urdhva	Tiryakbhyam	sutra	was	used.	The	
designed	cryptographic	unit	involving	mix	columns	and	inverse	mix	columns	for	AES	was	implemented	
on	a	Xilinx	of	FPGA.	A	100%	area	efficiency	and	a	two	times	speed	increase	was	achieved	as	compared	to	
other	implementations	–	Splitting	Approach	&	Look-up	Table	Approach.	

	Diganata	Sengupta	et.al	[8]	proposed	an	algorithm	for	fast	BCD	division	based	on	Nikhilam	and	
Parvartya	sutras.	They	showed	that	execution	time	does	not	depend	on	the	size	of	the	dividend	or	the	
divisor,	but	on	the	number	of	remainders	normalizations	required.	The	Vedic	Division	Algorithm	
exhibited	remarkable	results	with	respect	to	conventional	division	algorithms.	VLSI	implementation	of	
this	algorithm	was	not	tested.	

	Pavan	Kumar	et.al	[9]	designed	an	8-bit	Vedic	multiplier	using	barrel	shifter	which	requires	only	one	
clock	cycle	for	“n”	no.	of	shifts	using	Nikhilam	sutra.	The	design	was	implemented	and	verified	using	
FPGA	and	ISE	simulator.	The	proposed	design	exhibited	reduced	propagation	delay	(an	improvement	of	
45%)	when	compared	to	array	multipier,	booth	multiplier	and	conventional	vedic	multiplier	
implemented	on	FPGA.	The	high	speed	implementation	of	such	multiplier	has	a	wide	range	of	
applications	in	image	processing,	arithmetic	logic	unit	and	VLSI	signal	processing.	

		

Rakshith	Saligram	et.al	[10]	aimed	to	enhance	the	performance	of	pervious	reversible	logic	designs.	The	
Total	Reversible	Logic	Implementation	Cost	(TRLIC)	defined	as	sum	of	all	cost	metrics,	was	used	as	an	aid	
to	evaluate	the	proposed	design.	Urdhav	tiryakbhayam	sutra	was	used	for	designing	multiplier.	The	
efficiency	of	a	reversible	logic	circuit	is	characterized	in	terms	of	parameters	such	as	quantum	cost,	
number	of	constant	inputs,	garbage	outputs	and	number	of	gates	utilized	to	realize	the	logic	
implementation.	Lower	the	value	of	these	parameters	more	efficient	is	the	design.			The	quantum	cost	is	
the	parameter	that	directly	reflects	the	delay	of	quantum	circuit.	The	proposed	optimized	design	
exhibited	by	lower	TRLIC,	minimum	gate	count,	better	number	of	constant	inputs	as	well	as	minimum	
garbage	outputs	as	compared	to	the	pervious	reversible	logic	designs.	Lower	TRLIC	implicitly	means	
lower	quantum	cost,	hence	lower	delay	and	vice	versa.	The	design	was	verified	using	MODELSIM	.This	
multiplier	can	be	efficiently	adapted	in	designing	Fast	Fourier	Transforms	(FFTs)	Filters	and	other	
applications	of	DSP	like	imaging,	software	defined	radios,	wireless	communications.	

	

Kavita	et.al	[11]	designed	a	vedic	multiplier	implemented	on	FPGA	using	Gunakasamuchayah	Sutra.	The	
implemented	design	is	more	efficient	and	fast	as	compared	with	other	multipliers	and	the	look	up	tables	
required	to	implement	the	multiplier	is	also	less	when	compared	with	other	multipliers.	

	

Surabhi	Jain	et.al	[12]	implemented	an	optimized	binary	division	architecture	for	calculating	
deconvolution	using	Nikhilam	and	Parvartya	sutras.	The	simulation	results	showed	that	time	delay	of	
vedic	divider	architecture	is	reduced	by	approximately	19%	than	the	conventional	method.	They	also	
introduced	a	straightforward	approach	for	performing	deconvolution.	The	application	of	vedic	division	
in	this	approach	of	deconvolution	has	less	delay	of	31%	than	the	conventional	method.	The	algorithm	
was	coded	in	Verilog,	synthesized	and	simulated	using	Xilinx	ISE.		

Below	is	the	table	for	surveys	of	different	multiplier	design	using	Vedic	Mathematics.		

	

Sr.
No	

Title	of	Paper	 Publish
er	and	
Year	

Method/Sutra	from	
Veda	

Features	 Language	or	
Tool	

1	 Multiplier	Design	Based	on	
ancient	Indian	Vedic	
Mathematics	

IEEE-
2008	

Urdhva	
Tiryakbhayam	,		
Nikhilam	sutra	

Faster	multiplier	and	
square	architecture,	
delay	and	design	area	
less	

ALTERA	
Cyclone	–II	
FPGA	

2	 High	Speed	Energy	Efficient	
ALU	Design	using	Vedic	
Multiplication	techniques	

IEEE-
2009	

Urdhva	
Tiryakbhayam	

Parallel	generation	of	
intermediate	product,	
delay	and	less	design	
area		

-	

3	 Vedic	Mathematics	Based	
Multiply	Accumulate	Unit	

	

IEEE-
2011	

Urdhva	
Tiryakbhayam	

Binary	number	
multiplication,	Realized	
easily	on	silicon	due	to	
regular	and	parallel	
structure	

VHDL	and	
Xilinx	ISE	

4	 Design	a	DSP	Operation	
using	Vedic	Mathematics	

IEEE-
2013	

Urdhva	
Tiryakbhayam	

Vedic	mathematics	
based	DSP	requires	less	
processing	time	than	
inbuilt	MATLAB	
function,	Gives	better	
results	

MATLAB	

5	 Novel	Architecture	for	Inve
rse	Mix	Column	for	AES	
using	Vedic	Multiplication	
on	FPGA	

IEEE-
2013	

Advance	Encryption	
Standard	(AES),		
Urdhva	
Tiryakbhayam	

High	Speed	and	Low	on	
chip	area	

FPGA		

6	 A	New	Paradigm	In	Fast	BC
D	Division	Using	Ancient	
Indian	Vedic	Mathematics	
Sutras	

ICCSEA-	
2013	

Nikhilam	,		Parvartya	
sutra	

The	computation	time	
required	by	the	Vedic	
Division	Algorithm	is	
approximately	constant	
irrespective	of	size	of	
the	dividend	

-	

7	 FPGA	Implementation	of		
High	Speed	8-bit	Vedic	
multiplier	using	barrel	
shifter	

IEEE	
2013	

Nikhilam	Sutra	 Barrel	shifter	were	used	
to	reduce	the	delay	,	
improvement	in	speed	

FPG,	ISE	

8	 Optimized	Reversible	Vedic	
Multiplier	for	High	Speed	
Low	Power	Operations	

IEEE	
2013	

Urdhav	
tiryakbhayam	sutra	

Decreasing	Total	
Reversible	Logic	
Implementation	Cost	
(TRLIC)	,	delay	was	
reduced,	Useful	in	
applications	like	wireless	
communication,	image	
processing	and	software	
defined	radios	

MODELSIM	

9	 FPGA	Implementation	of	
Vedic	Multiplier	

IJARET	
2013	

Gunakasamuchayah	
Sutra	

Reduced	delay,	low	
power,	improvement	in	
speed,	area	efficient,	
reduced	design	
complexity,	increased	
modularity	

Xilinx		

10	 Binary	Division	Algorithm	
and	High	speed	
Deconvolution	Algorithm	
(based	on	Ancient	Indian	
Vedic	Mathematics)	

IEEE-
2014	

Nikhilam,	Parvartya	
sutra	

Applied	for	calculating	
deconvolution,	reduced	
time	delay	and	
complexity.		

Verilog	and	
Xilinx	ISE	

	

All	the	surveyed	designs	were	aimed	for	reducing	computation	time,	design	area,	power	consumption	
and	complexity.	The	quality	factors	associated	to	the	outputs	of	the	surveyed	designs	are	very	limited.	
The	quality	factor	“Efficiency”	can	be	linked	to	the	above	stated	survey	outputs.	Another	important	
Quality	factor	“Performance”	is	defined	as	“The	degree	to	which	a	system	or	component	accomplishes	
its	designated	functions	within	given	constraints”.		Performance	usually	manifests	itself	in	the	three	
measures:	Throughput,	response	time	and	Deadlines.	Quality	factor	“Performance”,	not	included	in	
McCall’s	quality	factors	model,	can	also	be	associated.		

CONCLUSION:	

This	paper	reviews	several	Vedic	sutras	that	are	implemented	in	different	designs	of	multipliers	for	
reducing	computation	time,	design	area,	power	consumption	and	complexity.		Use	of	sutras	are	useful	in	
different	applications	like	digital	signal	processing,	image	processing	and	computation	of	heavy	
calculations.	The	quality	factors	“Efficiency”	and	“Performance”	were	found	associated	to	the	surveyed	
design	outputs.	

	

ACKNOWLEDGMENT:	

The	author	would	like	to	thank	to	the	below	stated	individuals	for	their	contribution	of	this	work:	
	Swati	Dave	of	“The	Institute	for	the	Advancement	of	Vedic	Mathematics”	(IAVM),	UK.	
Prof.	Amos	Notea	,	Holon	Institute	of	Technology	Israel,	Faculty	of	Technology	Management-	Head	of	
Quality	Assurance	and	Reliability	Program.	
Dr.	Malki	Grossman,	Technion	–	Israel	Institute	of	Technology.	
	

	

REFERENCES:	

1. Vedic	Mathematics,	Bharati	Krsna	Tirthaji,	Jagadguru	Sankaracharya	of	Puri.	Motilal	Banarsidass	
Publishers	Private	Limited.	

2. Software	Quality	Assurance	–	From	theory	to	implementation,	Daniel	Gain.	Pearson	Education	
Limited.	

3. Honey	Durga	Tiwari,	Ganzorig	Gankhuyag,	Chan	Mo	Kim,	Yong	Beom	Cho,	“Multiplier	design	based	
on	ancient	Indian	Vedic	Mathematics”,	978-1-4244-2599-0/08/	©2008	IEEE.		

4. M.	Ramalatha,	K.	Deena	Dayalan,	P.	Dharani,	S.	Deborah	Priya,	“High	Speed	Energy	Efficient	ALU	
Design	using	Vedic	Multiplication	Techniques”,	978-1-4244-3834-1/09/	©	2009	IEEE.		

5. Devika	Jaina,	Kabiraj	Sethi	and	Rutuparna	Panda,	“Vedic	Mathematics	Based	Multiply	Accumulate	
Unit”,	978-0-7695-4587-5/11	©	2011	IEEE.		

6. Akhalesh	K.	Itawadiya,	Rajesh	Mahle,	Vivek	Patel,	Dadan	Kumar,	“Design	a	DSP	Operations	using	
Vedic	Mathematics”,978-1-4673-4866-9/13/	©	2013	IEEE.		

7. Sushma	R	Huddar,	Sudhir	Rao	Rupanagudi,	Ramya	Ravi,	Shikha	Yadav	&	Sanjay	Jain,	“Novel	
Architecture	for	Inverse	Mix	Columns	for	AES	using	Ancient	Vedic	Mathematics	on	FPGA”,		978-1-
4673-6217-7/13/	2013	IEEE.		

8. Diganata	Sengupta,	Mahamuda	Sultana,	Atal	Chaudhuri,	“A	New	Paradigm	In	Fast	BCD	Division	
Using	Ancient	Indian	Vedic	Mathematics	Sutras”,	David	C.	Wyld	(Eds):	ICCSEA,	SPPR,	CSIA,	WimoA-	
2013.	

9. Pavan	Kumar,	A	Radhika,	“FPGA	Implementation	of	high	speed	8-bit	Vedic	multiplier	using	barrel	
shifter”,	978-1-4673-6150-7/13/$31.00	©2013	IEEE.		

10. Rakshith	Saligram,	Rakshith	T.R,	“Optimized	Reversible	Vedic	Multiplier	for	High	Speed	Low	Power	
Operations”	Proceedings	of	2013	IEEE	Conference	on	ICT	2013.	

11. Kavita,	Umesh	Goyal,	“FPGA	Implementation	of	Vedic	Multiplier”,	International	Journal	of	Advanced	
Research	in	Engineering	and	Technology	(IJARET),	Vol	4,	Issue	4,	May-June	2013,	pp.	150-158.	

12. Surabhi	Jain,	Mukul	Pancholi,	Harsh	Garg,	Sandeep	Saini,	“Binary	Division	Algorithm	and	High	speed	
Deconvolution	Algorithm	(based	on	Ancient	Indian	Vedic	Mathematics)”	,	978-1-4799-2993-
1/14/©2014	IEEE.	
	
	
	

	

ABOUT	THE	AUTHOR:	

	

	
	

	
Raymond	Austin	is	a	quality	assurance	engineer	at	
Medical	Electronic	Systems,	Israel.	He	earned	a	
bachelor’s	degree	in	Electrical	and	Electronics	
Engineering	from	Coventry	University	(UK)	
Programme	in	Ruppin	Academic	Centre,	Israel	and	
in	Quality	&	Reliability	Engineering	from	Kinneret	
College	on	the	Sea	of	Galilee,	Israel.	Raymond	is	an	
American	Society	for	Quality	(ASQ)	and	Israel	
Society	for	Quality	(ISQ)	certified	quality	engineer.	
He	is	also	a	certified	Vedic	Math	trainer	and	a	
member	of	“The	Institute	for	the	Advancement	of	
Vedic	Mathematics”	(IAVM),	UK.	IAVM	is	a	charity	
established	to	promote,	disseminate,	research	and	
support	the	system	of	Vedic	Mathematics	
internationally.		

	

