A PRIME NUMBER INVESTIGATION USING BINARY STRINGS GENERATED BY APPLICATION OF THE EKADHIKENA PURVENA SUTRA

Marianne Fletcher

Abstract

The Ekadhikena Purvena sutra can be employed to calculate the number of digits before recurrence in the perfectly recurring decimal string for a rational number $1 / N$, where N ends on the digits $1,3,7$ or 9 . The number of digits, x, in one recurring cycle of the string can consequently be used to help determine the primality of N. This test is an application of Fermat's Little Theorem. In his book, Vedic Mathematics, Sri Tirthaji gives examples of the working of the Ekadhikena Purvena sutra in base 10, with the result that decimal strings are calculated. This paper discusses the results obtained when the Ekadhikena Purvena sutra is applied to binary numbers (i.e. base 2), with the resultant generation of a recurring binary string for $1 / N$. It was found that, when the computation is done in binary, a typical home computer can generate all the digits in the cyclic string related to $1 / N$ at a rate several orders of magnitude higher than when the sutra is applied to decimal numbers. Such an application of the sutra thus hugely increases the rate at which the number N can be confirmed prime or not.

Background and Introduction: Prime Numbers and Fermat's Little Theorem

Some important cryptographic algorithms critically depend on the fact that the prime factorization of very large numbers can take a long time. For many applications, the fast identification of large primes (often with several hundred digits) becomes very important.

Many primality tests have been developed and improved upon over the last century. The most obvious test if that of trial division: Given an input number n, check whether any prime integer m from 2 to \sqrt{n} evenly divides n.

Probabilistic tests provide provable bounds on the probability of being fooled by a composite number. Some such tests are the Fermat Primality test and the Miller-Rabin test.

Deterministic Tests provide a definite determination of a prime number. Examples of such tests are the Pocklington Primality test, as well as the AKS Primality test.

Fermat's Primality test is based on Fermat's Little Theorem ${ }^{1}$ which states that:
If p is prime and a is not divisible by p, then:

$$
a^{p-1} \equiv 1(\bmod p)
$$

(a can be any base: $a=2,3,4, \ldots$)

This means that

$$
\frac{a^{p-1}}{p} \text { has a remainder of } 1
$$

We can also write:

$$
\frac{a^{p-1}}{p}=\text { Quotient }+\frac{1}{p} \quad \text { where the remainder }=1
$$

Some examples follow.

Example 1

7 is PRIME: Choose base 10

$$
\begin{aligned}
& \frac{10^{6}}{7}=142857.142857 \\
& =142857+\frac{1}{7} \quad \text { where } \frac{1}{7}=0.142857^{\prime}
\end{aligned}
$$

Here, the remainder is 1 .
It can, furthermore, be noted that the decimal string for $\frac{1}{7}$ has $7-1=6$ digits before recurrence. Also $(7-1)$ is divisible by the number of digits in the recurring decimal string:

$$
\frac{(7-1)}{6}=1
$$

Example 2

79 is PRIME: Choose base 10

$$
\begin{aligned}
& \begin{array}{rlllllllllllllllll}
0,0 & 1 & 2 & 6 & 5 & 8 & 2 & 2 & 7 & 8 & 4 & 8 & 1 & 0
\end{array} \\
& \frac{10^{79-1}}{79}=\frac{10^{78}}{79}=1.2658227848101265822 \ldots \times 1076+0 . \dot{0} 126582278481 \\
& =1.2658227848101265822784810126582278481 \ldots x 1076+\frac{1}{79} \\
& \text { where } \frac{1}{79}=0 . \dot{0} 126582278481
\end{aligned}
$$

Again, the remainder is 1 . Also, the decimal string for $\frac{1}{79}$ has 13 digits before recurrence. We find that

$$
\frac{79-1}{13}=\frac{78}{13}=6
$$

So (79-1) is divisible by the number of digits in the recurring decimal string.

Example 3

27 is not prime: Choose base 10

$$
\begin{aligned}
\frac{10^{27-1}}{27}=\frac{10^{26}}{27} & =3703703703703703703703703.70 \dot{0} \\
& =3703703703703703703703703+\frac{19}{27} \quad \text { where } \frac{19}{27}=0 . \dot{7} 0 \dot{3}
\end{aligned}
$$

Here the remainder is 19 , not 1 . Also, the decimal string for $\frac{1}{27}$ has 3 digits before recurrence.
We find that

$$
\frac{27-1}{3}=\frac{26}{3}=8 . \dot{6}
$$

So (27-1) is NOT divisible by the number of digits in the recurring decimal string.
Fermat's Little Theorem in Terms of $\left(\frac{N-1}{x}\right)=k$
The preceding examples illustrate that Fermat's Little Theorem can be restated as follows: If p is prime and a is not divisible by p, then:

$$
p-1 \equiv k(\bmod x)
$$

where k is a whole number and x is the number of recurring digits in the cyclic string for $\frac{1}{p}$, provided that the string is in the base a. This provision is linked to theorem 88 by Hardy and Wright ${ }^{2}$ and is discussed in the section entitled "More on the k-values and the ekadhika".

Example 4

7 is PRIME: Choose base 2

$$
\begin{array}{cc}
& \frac{2^{7-1}}{7}=\frac{2^{6}}{7}=\frac{64}{7}=9.14285 \dot{7} \\
=9+\frac{1}{7} & \text { where } \frac{1}{7}=0.14285 \dot{7}
\end{array}
$$

Using base 2, the remainder is still found to be 1 .
However, to correctly investigate the k-value for a number N when using a base 2 , it is necessary that the number of recurring digits x be determined for N in binary, not decimal. The binary representation of $N=7$ is 111 .

The binary string for $\frac{1}{7}$ is: $\frac{1}{111}=0.001$. Here there are $x=3$ recurring binary digits in the string.
Using $\frac{(N-1)}{x}=k \quad$ we find that $\quad \frac{7-1}{3}=\frac{6}{3}=2$
So $(7-1)$ is divisible by the number of digits in the recurring binary string.

Example 5

79 is PRIME: Choose base 2

$$
\begin{aligned}
& \frac{2^{79-1}}{79}=\frac{2^{78}}{79} \\
& =3825714619033636628 \text { 817.0.012658227848i } \\
& =3825714619033636628817+\frac{1}{79} \\
& \text { where } \frac{1}{79}=0 . \dot{0} 12658227848 \dot{1}
\end{aligned}
$$

With base 2 , the remainder is found to be 1 . The binary representation of $\mathrm{N}=79$ is 1001111 .
The binary string for $\frac{1}{79}$ is:

$$
\frac{1}{1001111}=0 . \dot{0} 0000011001111011001000111010010101000 \dot{i}
$$

Here there are $x=39$ recurring digits in the binary string.
Using $\quad \frac{(N-1)}{x}=k \quad$ we find that $\quad \frac{79-1}{39}=\frac{78}{39}=2$
So $(79-1)$ is divisible by the number of digits in the recurring binary string.

Example 6

27 is not prime: Choose base 2

$$
\frac{2^{27-1}}{27}=\frac{2^{26}}{27}=2485513 . \dot{4} 8 \dot{1}=2485513+\frac{13}{27} \quad \text { where } \frac{13}{27}=0 . \dot{4} 8 \dot{1}
$$

Here the remainder is 13 , not 1 . The binary representation of 27 is 11011 .
The binary string for $\frac{1}{27}$ is: $\frac{1}{11011}=0 . \dot{0} 0001001011110110 \dot{1}$. Here there are $x=18$ recurring binary digits in the string.
Using $\quad \frac{(N-1)}{x}=k \quad$ we find that $\quad \frac{27-1}{18}=\frac{26}{18}=1 . \dot{4}$
So $(27-1)$ is NOT divisible by the number of digits in the recurring binary string.

The Fermat Primality Test and Pseudoprimes

Examples 1, 2, 4 and 5 demonstrate how, for any prime number N, (and any randomly chosen base a) $\frac{a^{N-1}}{N}$ always yields a remainder of 1 . They also demonstrate how, for a prime, $\frac{(N-1)}{x}=k$ always yields a whole number k-value, where x is the number of recurring digits in the string for $\frac{1}{N}$, provided that the string is calculated in the base a.

Examples 3 and 6 demonstrate how most non-primes yield remainders which are unequal to 1 , and k-values which are not whole numbers. So, the converse of Fermat's Little Theorem holds true in most cases,
i.e. If $\frac{a^{N-1}}{N}$ yields a remainder of 1 , or if $(N-1)$ is divisible by x, then N is prime.

However, the conditions stated above cannot be used as a fool-proof test for primality, as some compound numbers - although in the minority - also meet these requirements.

Example 7

33 is not prime: Choose base 10
$0,0303030 \ldots$

33 | 1,10 | 0 | 10 | $0{ }^{1} 0$ |
| :--- | :--- | :--- | :--- | $0^{1} 0 \ldots$

$$
\begin{aligned}
\frac{10^{33-1}}{33}=\frac{10^{32}}{33} & =3030303030303030303030303030303 . \dot{0} \dot{3} \\
& =3030303030303030303030303030303+\frac{1}{33} \quad \text { where } \frac{1}{33}=0 . \dot{0} \dot{3}
\end{aligned}
$$

Contrary to what might be expected, we see that, while 33 is not a prime number, the remainder is found to equal 1 . Also, the decimal string for $\frac{1}{33}$ has 2 digits before recurrence.
Testing with $\frac{(N-1)}{x}=k$ we find that $\frac{33-1}{2}=\frac{32}{2}=16$
So here, for a non-prime, k is a whole number.

Example 8

However, if we choose base 2:

$$
\begin{aligned}
\frac{2^{33-1}}{33}=\frac{2^{32}}{33} & =130150524 . \dot{1} \dot{2} \\
& =130150524+\frac{4}{33} \quad \text { where } \quad \frac{4}{33}=0 . \dot{1} \dot{2}
\end{aligned}
$$

Here we find that the remainder is not 1 . Furthermore, the binary representation of 33 is 100001 . The binary string for $\frac{1}{33}$ is: $\frac{1}{33}=\frac{1}{100001}=0.0000011111$.
There are $x=10$ recurring binary digits in the string.

$$
\text { Using } \frac{(N-1)}{x}=k \text { we find that } \frac{33-1}{10}=\frac{32}{10}=3.2
$$

So $(33-1)$ is NOT divisible by the number of digits in the recurring binary string.
Thus, by inspection, we see that - while a prime number always yields a remainder of 1 (or a whole number k-value) - a non-prime may do so as well, depending on which base is chosen.

A non-prime which yields a whole number k-value is called a Fermat pseudoprime. Below 50000 , only 1.23% of numbers which yield whole number k-values (for base 10) are pseudoprimes.

The conventional Fermat Probability test applied to a number N follows the procedure outlined in Column 1 of Table 1.

Test using ${ } a^{p-1} \equiv 1(\bmod p)$	Test using $\frac{(N-1)}{x}=k$
- Choose a random base a. - Find the remainder when a^{N-1} is divided by N. - If the remainder is not $1, N$ is not prime. (END OF TEST) If the remainder is 1 , there is a large probability that N is prime. In this case, choose another random base a and repeat the test until a remainder unequal to 1 is found. The more random a-values having been tested, and a remainder of 1 having always been found, the greater the probability that N is indeed prime.	- Choose a base a. - Find the number of digits x in the recurring string related to the base a. - Calculate $\frac{(N-1)}{x}=k$ - If k is not a whole number, N not prime. (END OF TEST) - If k is a whole number, and $k=1$ then N is prime. - If k is a whole number and $k \neq 1\left(^{*}\right)$ then apply one further test (involving x) to identify a factor of a potential pseudoprime. - If a factor is found, N is not prime. If a factor $(\leq \sqrt{N})$ is not found, N is prime.

Table 1
$\left(^{*}\right)$ It appears that, within the range of values thus far investigated, when $k<8$ (for base 10) and when $k<9$ (for base 2) then N is always prime - see discussion later.

The Fermat Prime test using $a^{p-1} \equiv 1(\bmod p)$ has Several Drawbacks:

1. It is not deterministic: an N-value can only be identified as having a high probability of being prime.
2. For very large numbers, many calculation steps are required (in a division process) to eventually yield a remainder of 1 . This may take a long time and can use up a large amount of computing power.
3. There are some pseudoprimes (called Carmichael numbers) which ALWAYS yield remainders of 1 , no matter what base is chosen. Such compound numbers are thus always incorrectly identified as primes.
4. Even if a number N is indeed prime, many bases may have to be investigated before its primality can be confirmed.
5. The test does not suggest a method to eliminate a pseudoprime - other than by eventually finding a remainder unequal to 1 - once the appropriate base (if it exists) happens to be chosen.

The Fermat Prime test using $\boldsymbol{k}=\frac{N-1}{x}$ and Vedic Mathematics

This paper discusses the results of an investigation using Vedic Mathematics, in conjunction with the procedure outlined in Column 2 of Table 1, to help determine the primality of a number N . The Ekadikena Purvena sutra is employed to determine the number of recurring digits, x, in the binary string for $\frac{1}{N}$.
This value can be used to determine the k-value where $k=\frac{N-1}{x}$.
If $k=1, N$ is identified as prime. If k is a whole number greater than 1 (* see note previous page) an additional test, also using x, is carried out. This test can be used to successfully sift out pseudoprimes.

The method outlined in this paper (although it still has a probabilistic component, as will soon be explained) has been used to identify all prime numbers below 500000 . It is suggested that the Fermat Primality test done in this way, addresses some of the drawbacks listed in the previous section for the conventional Fermat test: Use of the algorithm stated in the sutra may reduce computing time and power, while the x-value (which is found by application of the sutra) is used to identify the factors of all pseudoprimes, even the Carmichael numbers.

The Ekadhikena Purvena Sutra

Sri Tirthaji ${ }^{3}$ showed that the full recurring decimal string for every number N, ending on a $1,3,7$ or 9 , can easily be found by using the Ekadhikena Purvena division technique.

The sutra states: "By one more than the previous one".
The generation of the decimal string for $\frac{1}{19}$ is demonstrated below:
The denominator consists of the two digits 1 and 9 . Defining the "previous one" as the digit before the 9 , i.e. the 1 in the case of 19: "One more than the previous one" is: $1+1=2$. This 2 (called the "ekadhika") is now the new divisor (from left to right), or also the new multiplier (from right to left).

For string generation from left to right, instead of attempting to divide 19 into 1 (according to the conventional method), the procedure is now to simply divide 2 into 1 instead, i.e.

2 divided into 1 equals 0 remainder 1 . For this, write:
${ }^{1} 0$
with the rem 1 a superscript to the left of the quotient 0 . Then divide 2 into 10 , giving 5 rem 0 :

$$
{ }^{1} 0^{0} 5
$$

Then divide 2 into 5 , giving 2 rem 1 :

$$
{ }^{1} 0^{0} 5^{1} 2
$$

Division of 2 into 12 then yields 6 rem 0 :

$$
{ }^{1} 0^{0} 5^{1} 2^{0} 6
$$

Division of 2 into 6 yields 3 rem 0 :

$$
{ }^{1} 0{ }^{0} 5^{1} 2^{0} 6^{0} 3
$$

Division of 2 into 3 yields 1 rem 1:

$$
{ }^{1} 0{ }^{0} 5{ }^{1} 2{ }^{0} 6{ }^{0} 3{ }^{1} 1
$$

Division of 2 into 11 yields 5 rem 1:

$$
{ }^{1} 0{ }^{0} 5{ }^{1} 2{ }^{0} 6{ }^{0} 3{ }^{1} 1{ }^{1} 5
$$

Proceeding thus, the 18 digits of the recurring string

$$
{ }^{1} 0^{0} 5{ }^{1} 2{ }^{0} 6{ }^{0} 33^{1} 1{ }^{1} 5{ }^{1} 7{ }^{1} 88^{0} 9^{1} 47^{1} 3{ }^{1} 6{ }^{0} 88^{0} 4{ }^{0} 2{ }^{0} 1 \text { are generated. }
$$

Alternatively, the digits in the decimal string can also be generated from right to left in the following way:

Starting with 1 on the very right, multiply the 1 by 2 to obtain 2 ; then multiply this product by 2 again to obtain 4 ; then multiply 4 by 2 to obtain 8 ; then multiply 8 by 2 to get 16 ,

i.e.

${ }^{1} 68421$
where the ten's digit of the 16 is written as a superscript 1 , ready to be added ("carried over") onto the product of the next multiplication by 2 . The next step is to multiply only the 6 by 2 to get 12 , after which the superscript 1 (from the ten's digit of 16) is added onto 12 to get 13, i.e. $\quad{ }^{1} 368421$

Now multiply only the 3 by 2 , then add 1 to get 7 . Multiply 7 by 2 to get 14 , and write the ten's digit of the 14 as a superscript 1 :

$$
{ }^{1} 47^{1} 3^{1} 68421
$$

Proceeding thus, the complete cyclic string is obtained:

$$
{ }^{1} 05{ }^{1} 263{ }^{1} 1{ }^{1} 5{ }^{1} 7{ }^{1} 89{ }^{1} 47{ }^{1} 3{ }^{1} 68421
$$

The number of steps in the calculation can, furthermore, be halved by noting that the string of digits comprising the first half of the decimal expansion, added to the string of digits making up the second half, yields a sequence of nines, i.e.

$$
\begin{aligned}
& 052631578+ \\
& \underline{947368421} \\
& \underline{999999999}
\end{aligned}
$$

This phenomenon is an application of the Nikhilam Navatascaramam Dasatah sutra:
"All from 9 and the last from 10 " because, when the digits in the first half of the string are subtracted from 9 , the digits in the second half of the string are obtained. "The last from 10 " never features, as there is no last digit in a non-terminating string.

Explanation of the Working of the Ekadhikena Purvena Sutra

The recurring decimal string associated with a fraction is a geometric series of the numbers generated by dividing or multiplying successive terms by a common ratio related to the "ekadhika".

In general, any perfectly recurring decimal for $1 / \mathrm{N}$ can be written as:

$$
\frac{1}{\mathrm{~N}}=\sum_{\mathrm{n}=1}^{\infty}\left(\frac{1}{\mathrm{~N}+1}\right)^{\mathrm{n}} \quad \text { The ekadhika is then } \frac{(N+1)}{10}
$$

The Ekadhikena Purvena Sutra applied to $\frac{1}{N}$ where N has a Final Digit 1, 3 or 7

When the sutra (used on numbers to base 10) refers to the "previous one" it must always be "previous to" the digit $10-1=9$ in the denominator of a fraction. So that the sutra can be applied to decimal rational numbers (in form $\frac{a}{b}$) with denominators ending also on the digits 1,3 and 7 , such fractions can be manipulated as follows to have a last digit equal to 9 :

$$
\frac{1}{21}=\frac{1}{21} \times \frac{9}{9}=\frac{9}{189} \quad \frac{1}{13}=\frac{1}{13} \times \frac{3}{3}=\frac{3}{39} \quad \frac{1}{7}=\frac{1}{7} \times \frac{7}{7}=\frac{7}{49}
$$

For instance: $\quad \frac{1}{13}=\frac{1}{13} \times \frac{3}{3}=\frac{3}{39}$
For 39, "one more than the previous one" is $3+1=4$. The ekadhika is thus 4 . For right to left string generation, start with the numerator 3 as the last digit before recurrence, and then multiply successively with 4 , thereby obtaining:

$$
{ }^{3} 0^{2} 7^{3} 69^{1} 23
$$

Thus $\frac{1}{13}=0.007692 \dot{3}$
The process repeats until a remainder of 3 is once again reached. Because 3 is the very first multiplicand, any further steps in the process yield the same sequence of digits again.

Note: Employing $\frac{1}{N}=\sum_{n=1}^{\infty}\left(\frac{1}{N+1}\right)^{n}: \frac{3}{39}=3 \times \frac{1}{39}=3 \times \sum_{n=1}^{\infty}\left(\frac{1}{40}\right)^{n}$
The ekadhika $=40 / 10=4$
The ekadhika is seen here to be a multiple of 10 (as the decimal system employs a base 10).

Computer Program (to Generate Decimal Strings) and the Method of Rooting Out Pseudoprimes

The results of employing a computer program, using the Ekadhikena algorithm, to generate the decimal strings for all N -values (ending on 1, 3, 7 or 9 - this includes all primes excluding 2 and 5) between 3 and 10000 have already been reported in a previous article ${ }^{4}$. The lengths x of the strings before recurrence were found, which then enabled the testing for primality (testing whether $k=\frac{(N-1)}{x}$ is a whole number or not). The method of rooting out
the pseudoprimes (with reasons) was also discussed in detail in the above-mentioned article. It was reported how all primes below 10000 were successfully identified, and all pseudoprimes were easily eliminated using a method which is again briefly outlined (without proof) below:

If N happens to be a pseudoprime (base a) it satisfies the criterion that,

$$
k=\frac{N-1}{x}
$$

is a whole number. Thus also $N=(k x+1)$. It can be shown that:
If N is a pseudoprime: It has factors in the form $(d x+1)$ where $d<k$
Therefore, once N is found to have a whole number k-value greater than 1 , it is tested for a factor $(d x+1) \leq \sqrt{N}$. If no such factor is found, then N is prime.

Since the writing of the previous article, additional analysis has successfully revealed all the 5133 primes below 50000 , as well as all the pseudoprimes (base 10) below 50000 . The list of all the 64 Fermat pseudoprimes (base 10) below 50000 is given in Table 2.

Note that the smallest k-value is 8 . The second smallest is 15 .
The 64 Pseudoprimes (base 10) below $N=50000$
(1.23% of the 5197 numbers below 50000 with whole number k-values)

\mathbf{N}	\mathbf{x}	\mathbf{k}
9	1	8
33	2	16
91	6	15
99	2	49
259	6	43
451	10	45
481	6	80
561	16	35
657	16	35
703	18	39
909	4	227
1233	8	154
1729	18	96
2409	8	301
2821	30	94
2981	10	298

\mathbf{N}	\mathbf{x}	\mathbf{k}
3333	4	833
3367	6	561
4141	20	207
4187	13	322
4521	8	565
5461	42	130
6533	46	142
6541	30	218
6601	330	20
7107	374	19
7471	30	249
7777	12	648
8149	28	291
8401	15	560
8911	198	45
10001	8	1250

N	x	k
11111	5	2222
11169	16	698
11649	32	364
12403	78	159
12801	400	32
13833	364	38
13981	30	466
14701	60	245
14817	32	463
14911	30	497
15211	390	39
15841	120	132
19201	30	640
19503	98	199
20961	16	1310
21153	32	661

N	x	\mathbf{k}
21931	30	731
23661	14	1690
24013	174	138
24661	30	822
27613	52	531
29341	60	489
34113	328	104
34133	1484	23
34441	60	574
35113	24	1463
38503	138	279
41041	30	1368
45527	26	1751
46497	32	1453
46657	96	486
48433	48	1009

Table 2

The Generation of Binary Strings Using the Ekadhikena Purvena Sutra

The use of decimal strings for prime number identification was found not to be ideal. Using the computer program on a home PC to obtain the decimal strings of the reciprocals of (relatively small) primes close to 1000000 , proved eventually to take up far too much time.

For example, while the prime 4007 (with 4006 recurring digits and thus $k=1$) took but 0.47 seconds, and the prime 8017 (also with $k=1$) took but 1.81 seconds to identify, the prime 80051 (also with $k=1$) took 4 minutes 13 seconds to identify. The prime 999983 (also with $k=1$) took about 3.2 hours to identify. However, a prime with a much larger k-value, and thus less recurring digits x, took far less time to identify: for instance, 43037 (with only 29 recurring digits and thus with $k=1484$) took but 0.03 seconds to identify.

Besides attempts to improve the computer programming methods and efficiency, as well as using a faster and more efficient computer, it was decided to investigate whether application of the Ekadhikena Purvena Sutra on binary (instead of decimal) numbers might improve the speed of prime number identification. An example of how this can be done is given below.

Example 9

13 in binary is 1101 . To find the binary string of $\frac{1}{1101}$ proceed as follows:
By one more than the one before " 110 ": $\quad 110+1=111$ The ekadhika is thus 111 .
Starting with 1, and using 111 as the multiplier from right to left, and carrying and adding successive binary digits, the following binary string is obtained:

Thus:

$$
\frac{1}{1101}=0.0 \dot{0} 010011101 \dot{1}
$$

There are $x=12$ binary digits in one recurring cycle of this string.
Using $\frac{(N-1)}{x}=k$ we find that $\frac{13-1}{12}=1$.
With $k=1, N=13$ is correctly identified as prime.
The algorithm of the sutra, employed to binary $\frac{1}{13}$, thus proceeds as follows:

Figure 1

Comparison of \boldsymbol{k}-values in Binary and in Decimal

For the case of $\frac{1}{13}$:
In decimal: $\frac{1}{13}=0.077692 \dot{3} \quad x=6$ and $k=\frac{(N-1)}{x}=\frac{(13-1)}{6}=2$
In binary: $\quad \frac{1}{1101}=0.0000100111011 \quad x=12$ and $k=\frac{(N-1)}{x}=\frac{(13-1)}{12}=1$
So, although the k-values differ, they are whole numbers in both bases. Furthermore:
For $\frac{1}{13}$:
076+
$\underline{924}$
999
while for $\frac{1}{1101}$:
$000100+$
$\underline{111011}$
111111
$\frac{1}{13}$ in decimal displays the working of the sutra because the first half of one cycle of therecurring string adds to the second half to yield a string of 9's.

But $\frac{1}{13}$ in binary displays an adapted version of this sutra, i.e. All from 1 and the last from 2, because the two halves of its cyclic string yield a string of 1's when added.

This last phenomenon is found to occur for all even-numbered strings related to prime numbers (proof given in a previous article ${ }^{4}$), but it only occurs occasionally for a pseudoprimes. This phenomenon is briefly touched upon later.

Using binary numbers, Fermat's prime test is carried out in base 2. The Ekadhikena Purvena sutra, applied to binary numbers, uses: By one more than the one before the 1, instead of By one more than the one before the 9 , as is the case for decimal numbers.

This addition effectively makes the right-to-left multiplier (or left-to-right divisor) - the Ekadhika - a multiple of 2 (instead of a multiple of 10 , as is the case when the Ekadhika is used to generate a decimal string).

A binary string is an infinite geometric series based on powers of 2 . The following example displays the working of the "by one more than the one before" concept employed by the Ekadhikena sutra applied to $\frac{1}{7}$ in binary. It shows how the recurring string for $\frac{1}{7}$ consists of an infinite number of successive powers of $\frac{1}{8}=\frac{1}{2^{3}}(\equiv 0.001$ in binary) added together. It also clearly demonstrates why there can be only three digits before recurrence in the binary string for $\frac{1}{7}$ (thus making $k=2$).

Example 10

$$
\begin{aligned}
& \qquad \frac{1}{N}=\sum_{i=1}^{\infty}\left(\frac{1}{N+1}\right)^{i} \\
& \begin{array}{l}
\text { terminating } \\
\text { binary string } \\
\sum_{i=1}^{\infty}\left(\frac{1}{1000}\right)^{i}=(0,001)^{1}+(0,001)^{2}+(0,001)^{3}+(0,001)^{4}+\cdots \infty \\
\frac{1}{8} \equiv \sum_{i=1}^{\infty}\left(\frac{1}{111+1}\right)^{i}=\sum_{i=1}^{\infty}\left(\frac{1}{1000}\right)^{i} \\
\frac{1}{111}=0,001001000
\end{array}
\end{aligned}
$$

When right-to-left string generation is done in binary, the very last digit before recurrence (i.e. the first digit to be multiplied by the Ekadhika) is always a 1 . Because only 1's and 0's are employed, the algorithm is found to generate recurring strings much faster than is the case for decimal strings.

Computer Program to Generate Binary Strings for Numbers Below 500000

A computer program was written which employs the Ekadhikena sutra adapted for binary numbers. All numbers ending in 1, 3, 7 or 9 below 500000 (in decimal) were converted into binary, and the lengths of their binary strings were determined by the program. A time comparison was done between the rate of prime number identification in binary versus in decimal. An example of the identification of a prime number close to 500000 follows.

Example 11

Test $N=481433$ (prime)
Convert into binary:

$$
\frac{1}{481433} \equiv \frac{1}{1110101100010011001}
$$

Calculate the ekadhika: $\quad 111010110001001100+1=111010110001001101$

Proceed with right to left multiplication of 1 with the ekadhika, to obtain the full cyclic string shown on the next two pages.

Number of recurring digits: $x=8597 \quad k=\frac{481433-1}{8597}=56$

Time for calculation of x : 0.11 seconds.
Time for confirmation that not pseudoprime (test for a factor $(d x+1)$ where $d<k$): ~ 0.4

$$
\frac{1}{481433} \equiv \frac{1}{1110101100010011001}
$$

 トOトOOトOトOOトOトOト尸トトO トロトト○○○ト○○トトトロトトトト○ トトトロトロトロト○トトトトト○○ト○
 ○トトトトゥ○○ 000000 HO ○トロトн○○ ○○○トト○○ 0000000 ○トロト○ － 000 O
$\begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$ ○○○○○ トゥ ○ト○トト ○○○○ト○ HOOHOHनO $\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1\end{array}$ $\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}$ トト○○ト尸○○ $\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}$ －OHO
－ 0 Hन $\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}$ 1
1
1
1
0 －OOH $\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 0\end{array}$ $\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 1 & 1\end{array}$ $\begin{array}{lll}1 & 1 & \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0\end{array}$ $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0\end{array}$ 0
1
1
0
1
1
0 $\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}$ －0000 $\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}$

Results of Testing for Primality, and the Time Period to Generate Binary Strings

Between 3 and 500 000: 41681 numbers were found to have whole number k-values.
Of these, 144 (0.35%) were identified as base 2 pseudoprimes (Poulet numbers) by finding that they were divisible by a factor $(d x+1)$ with $d<k$. Thus $41681-144=41537$ primes were found. Including 2 , all the 41538 PRIMES below 500000 were thus successfully identified.

The time for identification using binary strings, is much faster than when using decimal strings (refer to Tables 3 and 4).

The identification time depends on the x-value, i.e the number of binary digits occurring in one cycle.

Thus N-values with $k=1$ take the longest time to confirm their prime status: the longest string below 500000 (i.e. the string for 499 979) took about 5 seconds to generate. Such strings do not need to be subjected to a further pseudoprime test.

The strings for numbers with larger k-values (thus with relatively shorter cyclic strings) were generated much quicker. For instance, the string for 498961, with $k=10$, was found within 0.56 seconds.

Although all numbers (ending on the digits 1, 3, 7 and 9) below 500000 were tested, several larger numbers were tested at random: While the string for 1900043 (with $k=1$) was found in 23 seconds, the string for 1900009 (with $k=72$) was generated in 0.4 seconds. The generation of the string for a binary number near 10000000 (with $k=100$) took only about 1 second.

Table 4 shows a comparison of the maximum time (i.e. with $\mathrm{k}=1$) it takes for approximately equal length strings to be generated in both base 10 and base 2 . The difference between the generation time for decimal and binary strings was found to increase substantially as the numbers grow larger.

Table 3

N	X	$\begin{gathered} \mathrm{k}=1 \\ \text { time }(\mathrm{s}) \end{gathered}$	x/time
5003	5002	0.015	333467
10037	10036	0.079	127038
20029	20028	0.156	128385
30011	30010	0.188	159628
39989	39988	0.323	123802
50021	50020	0.36	138944
60029	60028	0.516	116333
70003	70002	0.625	112003
80021	80020	0.667	119970
90011	90010	0.812	110850
100003	100002	0.855	116961
120077	120076	1.033	116240
140069	140068	1.266	110638
160019	160018	1.391	115038
180043	180042	1.641	109715
200003	200002	1.876	106611
220013	220012	2	110006
240011	240010	2.251	106624
260003	260002	2.433	106865
280013	280012	2.594	107946
300043	300042	2.906	103249
350003	350002	3.359	104198
399989	399988	3.548	112736
450101	450100	4.329	103973
499979	499978	5.079	98440

N	$k=2$		$k=3$			
	time(s)	$x /$ time	N	X t	time(s)	$x /$ time
50092504	0.015	333867	5101	1700	0.000	750000
100075003	0.051	196197	9973	3324	0.016	623250
199919995	0.088	227160	20011	6670	0.047	425745
2998314991	0.116	258466	30133	10044	0.078	386308
4003120015	0.172	232733	39883	13294	0.109	365890
5003325016	0.188	266128	49957	16652	0.141	354298
6001730008	0.234	256479	60013	20004	0.172	348907
7000135000	0.328	213415	70099	23366	0.188	372862
8003940019	0.328	244019	79693	26564	0.234	340564
9000745003	0.371	242604	89923	29974	0.25	359688
10005750028	0.453	220874	100069	33356	0.312	320731
12004760023	0.547	219463	120067	40022	0.328	366055
13999969999	0.625	223997	140053	46684	0.406	344956
16015980079	0.781	205068	160243	53414	0.5	320484
18002390011	0.862	208842	180811	60270	0.562	321726
200023100011	0.886	225759	200293	66764	0.625	320467
219983109991	1.047	210107	220141	73380	0.687	320437
239999119999	1.094	219377	239893	79964	0.75	319856
260023130011	1.187	219058	260011	86670	0.782	332494
280031140015	1.406	199168	280069	93356	0.938	298580
300007150003	1.469	204225	300109	100036	0.969	309709
350033175016	1.578	221820	349813	116604	1.187	294703
400031200015	1.985	201526	400051	133350	1.308	305849
450103225051	2.031	221616	450019	150006	1.371	328241
499943249971	2.406	207790	499957	166652	1.621	308424

N X	$\begin{aligned} & \mathrm{k}=10 \\ & \text { time }(\mathrm{s}) \end{aligned}$	$x /$ time
4871487	0.000	1800000
9431943	0.000	1500000
194711947	0.015	1298000
313913139	0.031	1012581
412014120	0.031	1329032
510715107	0.032	1595938
600416004	0.047	1277447
709917099	0.063	1126825
801498015	0.078	1027538
900719007	0.078	1154744
10059110059	0.094	1070106
12004112004	0.14	857429
13999113999	0.141	992837
16003116003	0.156	1025833
18036118036	0.187	964492
20059120059	0.187	1072674
21987121987	0.204	1077794
23859123859	0.261	914138
26044126044	0.312	834744
27976127976	0.297	941953
30015130015	0.313	958946
35056135056	0.375	934827
40047140047	0.407	983956
45007145007	0.438	1027557
49896149896	0.558	894194

Table 3
Some \boldsymbol{k}-values for primes in range 5000 to 500000

Decimal String with $k=1$	Generation time (s)	Binary String with $k=1$	Generation time (s)
20047	11	20029	0.2
90011	300	90011	0.8
499976	960	499976	5.1
999983	11400	1000003	8.7
-	-	near ten million	117

Table 4

The Rooting out of the Pseudoprimes

With its whole number k-value status established, each of the 144 pseudoprimes below 500000 was identified as such in an additional time of less than 0.001 seconds. This was done by testing all numbers with $k>1$ for a factor $(d x+1)<\sqrt{N}$. See Table 5 for the results.

Some Important Observations with Regards to the Pseudoprimes and their Testing:

1. In decimal (for all numbers tested below 50000) no pseudoprime revealed a k-value less than 8. In binary (for all numbers tested below 500000) no pseudoprime was found to have a k-value less than 9 . The calculation time for the recurring string of a pseudoprime is thus generally far less than for a real prime of approximately equal size. The reason for large pseudoprime k-values (thus relatively shorter recurring strings) lies in the fact that a pseudoprime must have at least two factors, both of which themselves, can be written in terms of x. An attempt at illustrating this is given below:

Say N has two unequal prime factors, i.e. $\quad N=\left(d_{1} x+1\right)\left(d_{2} x+1\right)$
then

$$
\begin{aligned}
k x+1 & =\left(d_{1} x+1\right)\left(d_{2} x+1\right) & \\
k & =d_{1} d_{2} x+d_{1}+d_{2} & \text { if } x \neq 0
\end{aligned}
$$

If d_{1} and d_{2} are integers, their smallest possible values are 1 and 2 respectively.
Assuming $\mathrm{x} \geq 2$ then yields: $\quad k \geq(1)(2)(2)+1+2$
Thus

$$
k \geq 7
$$

However, many d-values are not integers greater than 1 - many have fractional values lying between 0 and 1 . In such cases, the x-value must be big enough to still yield a relatively large k value. The above illustration, therefore, does not cover all eventualities.

Furthermore, the smallest factor must have the property: $\left(d_{1} x+1\right)<\sqrt{N}$
Thus $\quad\left(d_{1} x+1\right)^{2}<k x+1$
and

$$
k>\left(d_{1}\right)^{2} x+2 d_{1} \quad \text { if } x \neq 0
$$

Substitution of $d_{1}=1$ then yields

$$
k>x+2
$$

This suggests that a pseudoprime with two factors having d_{1} and d_{2} greater or equal to 1 , implies $x<k$. The data in Table 5 is in accord with this observation. Also, d_{1} and d_{2} are integers. The only three N-values (with two factors) in Table 5 with non-integer d_{1} and d_{2}-values less than 1 , have $x>k$. These numbers are 4371, 8911 and 25761 .

Table 5 shows that pseudoprimes with three and four factors were also found. Except for one number (294409, with $x=36$; factors 37, 73 and 109; and respective d-values 1,2 and 3) all such pseudoprimes have one or more non-integer d-values. In fact (in the case of there being more than two factors), very few integer d-values occur, but when they do, it is invariably for cases where x $<k$.

If it can be conclusively established why $k \geq 9$ for base 2 pseudoprimes, the prime test can be adapted to immediately confirm the primality of any N-value with $k \leq 8$. Within the range investigated, about 88% of all whole number k-values lie below 9 . If this trend extrapolates to larger numbers, many more primes may thus be identified without the need for any further testing.
2. Due to the necessity of testing for non-integer d-values during the pseudoprime test, the overall method still has a probabilistic component: If no factor has yet been found by the time one tests, say, for for $\mathrm{d}=999999 / 1000000$, what limit must be set to stop the test and confirm that N is indeed prime? (Or, a limit having been set and no factor found within that limit, what is the probability than N is prime?) The limit placed on both the numerator and the denominator of d in the computer program employed in the current investigation, was about 2000. Within the range of numbers investigated, no pseudoprime "slipped through unidentified" using this criterion.
3. Figure 2 shows the percentage occurrence of whole number k-values within the range investigated. For the 41681 numbers below 500000 with whole number k-values:
88% have $\quad 1 \leq k \leq 8 \quad$ (no pseudoprimes in this region).
11.2% have $\quad 9 \leq k \leq 200 \quad$ (28 pseudoprimes found)
0.8% have $\quad k>200 \quad$ (116 pseudoprimes found)
Also, 37.3% have $k=1$, thus confirming them prime.

Looked at in a different way: (See Figures 3 and 4).
For binary numbers, only 0.35% (144 out of 41681) of all the whole number k-values below 500000 are pseudoprimes.

Only 28 of these $(\sim 0.07 \%)$ are found amongst the 41373 numbers with k-values less than 221 .
116 pseudoprimes are amongst the 308 numbers ($\sim 38 \%$ of them) which have the biggest k-values (with k s between 221 and 16789).

With reference to the last point, one might thus reasonably conclude that, if a tested binary number has a k-value greater than about 220 , there is an approximate 40% chance that the number is a pseudoprime

Figure 4 illustrates the density of occurrence of base 2 pseudoprimes with $k \geq 221$.

Figure 3

Out of those numbers with the 308 biggest k-values, 116 are pseudoprimes.
A number with a large k-value (i.e. relatively few recurring digits compared to the binary string length) has $\sim 40 \%$ chance of being a pseudoprime.

It appears that for $\mathrm{k}<9, N$ is always prime.

Figure 4
4. Using the $(d x+1)<\sqrt{N}$ pseudoprime test, while all factors of pseudoprimes were found in less than 0.001 seconds, all actual prime numbers (with k-values greater than 1) took much longer - between about 0.3 to 0.6 seconds - to be checked for factors in form $(d x+1)$. The 0.6 second maximum time was, of course, determined by the limit set on the d-value. When no such factor was found, the test was terminated. It was observed that: Just by ordering numbers in terms of the run-time for the pseudoprime test, all pseudoprimes were immediately sifted out. A possible criterion for pseudoprime identification could thus be: Within a certain range of numbers, if the run-time for the pseudoprime test is greater than a pre-determined cut-off time, one can almost be certain that N is prime.
5. All prime numbers N with even-numbered strings have the property that the first half of the binary string for $1 / N$ adds to the second half to give a string of 1's (the adapted Nikilam sutra: "All from 1 and the last from 2"). There are 134 pseudoprimes (out of the total 144 pseudoprimes below 500000) with even-numbered strings. Only 22 of them concur with the adapted Nikilam sutra. Thus, the overwhelming majority of pseudoprimes (84%) do not possess this property. This difference between a pseudoprime and a prime might be usefully employed as an additional factor in a primality test procedure.
6. A study of the data in Table 5 shows that: For a pseudoprime N, the number of recurring digits in $1 / N$ (i.e. x) is the lowest common multiple (LCM) of the number of recurring digits (say, x_{1}, x_{2}, etc.) in each of the cyclic binary strings related to the respective prime factors (say ($d_{1} x+1$), $\left(d_{2} x+1\right)$ etc.) of N. This accords with the fact that each factor must itself be one plus a multiple (or submultiple) of x. The next example serves to illustrate this observation.

Example 12

For $N=90751$ with $x=75$ and $k=1210$ and factors 151 and 601 (both prime), the respective values for d_{1} and d_{2} are 2 and 8 .

$$
90751=k x+1=(1210)(75)+1
$$

Also $\quad d_{1} x+1=(2)(75)+1=151$ and $d_{2} x+1=(8)(75)+1=601$

The prime factors 151 and 601, themselves, have respective x -values (i.e. number of recurring digits in the strings for $\frac{1}{151}$ and $\frac{1}{601}$) of $x_{1}=15$ and $x_{2}=25$.
Thus $\quad k_{1} x_{1}+1=(10)(15)+1=151 \quad$ and $\quad k_{2} x_{2}+1=(24)(25)+1=601$
Both 15 and 25 are divisors of 75. Thus x_{1} and x_{2} are divisors of x. Thus, x is the LCM of x_{1} and x_{2}.

More on k-values and the Ekadhika

To paraphrase J. Pickles (2000) ${ }^{5}$:
It is evident that a cycle of length $(N-1)$ is the longest that can be achieved with the divisor N. The successive steps of division by N can never be exact, or the decimal
would terminate, and there are only $(N-1)$ possible remainders. Once these are exhausted, the sequence must repeat.

The maximum number of digits must be $(N-1)$. Why do some numbers have the property that the sequence of numbers in a cycle is only half this maximum limit (i.e. $k=2$) or one third of this maximum limit (i.e. $k=3$) etc.?

The answer to this question lies in what has already been pointed out in Example 10, where $1 / 7$ in binary must necessarily only have 3 binary digits before recurrence. (It is the same reason why $\frac{1}{999}$ in decimal must also have only three decimal digits in one recurring cycle.)

Hardy and Wright ${ }^{2}$ address the answer to this question in Theorem 88 of the book The Theory of Numbers.

Theorem 88 of Hardy and Wright:

$a^{x} \equiv 1(\bmod N)$ has a smallest solution x which is a divisor of $\Phi(N)$
where $\Phi(N)$ is equal to the number of integers smaller than N which are relatively prime (co-prime).

Stated in another way: If $\frac{a^{x}}{N}$ is found and a remainder equal to 1 is obtained (i.e. recurrence occurs), then the smallest possible value for x is a divisor of $\Phi(N)$. Thus $\Phi(N)$ divided by x must have an integer value, i.e. $\frac{\Phi(N)}{x}=k$. Since all integers smaller than a prime number are relatively prime to it, $\Phi(N)=N-1$ for a prime. Therefore, for a prime number: $\frac{N-1}{x}=k$. It also follows that, if $x=N-1$, (thus $k=1$) N is always prime.

For a compound number, since there are some numbers below it which are not relatively prime, it follows that $(N-1)=\Phi(N)+n_{p}$, where n_{p} represents the number of integers smaller than N which are not co-primes. In the case of a pseudoprime, it just so happens that n_{p} is also divisible by N, which is usually not the case for a non-prime. This has been illustrated in a previous article ${ }^{4}$.

In a brief analysis, Jeremy Pickles ${ }^{5}$ uses several examples to show that there is a relationship between the ekadhika and the k-value: The ekadhika is either a perfect power of k, or it is a polynomial residue of the divisor N. The following examples illustrate this phenomenon:

Example 13

In base 10: $\frac{1}{163}=\frac{1}{163} \times \frac{3}{3}=\frac{3}{489} \quad$ Use of the sutra shows that $x=81$, thus $k=2$.
Here the ekadhika is $48+1=49=7^{2}$. We thus see that the ekadhika is a power of $k=2$.

Example 14

In base 10: $\frac{1}{127}=\frac{1}{127} \times \frac{7}{7}=\frac{7}{889} \quad$ Use of the sutra shows that $x=42$, thus $k=3$.
Here the ekadhika is $\quad 88+1=89=(6)^{3}-1(127)$
We can also write: $\quad \frac{89}{127}=\frac{6^{3}}{127}-1$
We see thus that the ekadhika is the cubic (i.e. power $k=3$) residue of the divisor 127.

Example 15

In base 2: for $\frac{1}{113} \equiv \frac{1}{1110001}$: \quad Use of the sutra shows that $x=28$, thus $k=4$.
Here the ekadhika is $111000+1=111001 \equiv 57=(12)^{4}-183(113)$
We can also write: $\quad \frac{57}{113}=\frac{12^{4}}{113}-183$
We see thus that the ekadhika is the quartic (i.e. power $k=4$) residue of the divisor 113 .
In general, the relationship between the ekadhika and the k-value (and thus also the number of digits before recurrence) is thus:

$$
\text { ekadhika }=y^{k}-q N
$$

where both y and q are integers, and q is the quotient when y^{k} is divided by N.
We can also write: $\quad y^{k} \equiv$ ekadhika $(\bmod N)$
It is of interest to compare this to Fermat's Little Theorem: $a^{p-1} \equiv 1(\bmod p)$
The k-values for one number also differ depending on the base used, as shown in Figure 4.
For $\frac{1}{7}$ in decimal: $k=1 \quad$ ekadhika $=5=(12)^{1}-1(7)$
For $\frac{1}{7}$ in binary: $\quad k=2 \quad$ ekadhika $=4=(2)^{2}$
$N=7 \equiv$ Decimal:
$N=111 \equiv$ Binary:
$\frac{1}{111}=0.001 \ldots$.
$\frac{10}{111}=0.010 \ldots$.
$\frac{11}{111}=0.110 \ldots$.
$\frac{100}{111}=0.100 \ldots$.
$\frac{101}{111}=0.101 \ldots$
$\frac{110}{111}=0.110 \ldots$.
$x=3$
$k=2$

Figure 4

Summary and Suggestions for Further Investigation

1. Compared to decimal string generation, a computer program (employing the Ekadhikena Purvena sutra) can generate the number of of recurring digits in the binary string for $\frac{1}{N}$ at a much
higher rate. The difference in the generation rate of binary versus decimal strings increases with N.
2. Binary numbers up to about 10 million have been investigated. The maximum time (if $k=1$) to generate the recurring string for a number close to 10^{7} is approximately 2 minutes. Although this is several orders of magnitude faster than when the sutra is applied to decimal numbers, the current method would still take an impossibly long time to identify primes with several hundred digits (i.e. those used in cryptology).
3. The programming for this investigation was done using TrueBasic. The algorithm is currently being rewritten in $\mathrm{C}++$. By using more efficient data structures, calculation times may be reduced significantly.
4. Employment of hogher-performance computing hardware and more efficient implementation of the algorithms should enable far larger prime numbers to be identified using the method outlined in this paper. The home PC that was used in the current investigation has the following characteristics:

Intel Core i5-7200U $2,5 \mathrm{GHz}$ with Turbo Boost up to 3.1 GHz

4 GB DDR4 Memory; 1000 GB HDD

The new $\mathrm{C}++$ program will be run using a faster processor and larger RAM.
5. All prime numbers N (and several pseudoprimes) with even-numbered strings have the property that the first half of the binary string for $1 / N$ adds to the second half to give a string of 1 's. It is planned to incorporate this property (propounded by the Nikilam sutra) into the improved C++ program - thus possibly reducing by up to a half the time required to generate recurring strings.
6. Once the improvements suggested in points 3,4 and 5 , have been implemented, it is planned that the rate at which the improved program generates binary strings, be compared with the rates at which other existing methods achieve the same result. This has not yet been done.
7. If it can be conclusively established why $k \geq 9$ for base 2 pseudoprimes, the prime test can be adapted to immediately confirm the primality of any N-value with $k \leq 8$. (See Figure 5)
8. Employment of the Ekadhikena Purvena sutra to find the number of recurring digits x in a binary string, serves a dual purpose: Besides being able to prove primality when $x=1$ (or perhaps even when ≤ 8), the x-value can also be used in the search for factors of pseudoprimes in the form $(d x+1)$. However, due to the necessity of testing for non-integer d-values during the pseudoprime test, the overall method still has a probabilistic component. Further investigation needs to be done to find out if a limit can be set on d, below which the test can be terminated, and N confirmed, unquestionably, to be prime. Alternatively, a limit to d having been set, and no factor found within that limit, can one set a value to the probability that N is prime?
9. Do the Carmichael numbers have any particular pattern in their k-values which make them always pass the conventional Fermat Primality test, no matter what base is chosen? This is a topic for further investigation.
10. Another topic for investigation is the relationship between the formulas: $y^{k} \equiv$ ekadhika $(\bmod N)$ and $a^{p-1} \equiv 1(\bmod p)$ discussed in the previous section.
11. It is proposed that, within a large range of data, a Fourier analysis be done on calculated k values to see whether any pattern in their occurrence emerges.

References

1. Fermat's Little Theorem: first stated in a letter dated October 18, 1640. Euler provided the first published proof in 1736.
2. Theorem 88 in "The Theory of Numbers", G.H. Hardy and E.M. Wright (1938)
3. Vedic Mathematics, Bharati Krishna Tirtha (1965)
4. An Investigation into the working of the Ekadhikena Purvena Sutra, and how it can be used to identify Prime Numbers, M. Fletcher (Proceedings of $16^{\text {th }}$ World Sanskrit Conference, Bangkok (2015)
5. Jeremy Pickles, IAVM website (June 2000)

Appendix

Figure 5
A proposed, adapted, Fermat Primality test (if it can conclusively be shown that no non-prime exists with $\mathbf{k} \leq 8$)

[^0]The 144 Pseudoprimes base 2 below 500000

The 144 Pseudoprimes base 2 below 500000

The 144 Pseudoprimes base 2 below 500000

毋 6
$\stackrel{7}{7}$
$\underset{\sim}{m}$

[^0]:

