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Abstract 

The Ekadhikena Purvena sutra can be employed to calculate the number of digits before 
recurrence in the perfectly recurring decimal string for a rational number 1/N, where N ends on 
the digits 1,3, 7 or 9. The number of digits, x, in one recurring cycle of the string can consequently 
be used to help determine the primality of N. This test is an application of Fermat’s Little 
Theorem. In his book, Vedic Mathematics, Sri Tirthaji gives examples of the working of the 
Ekadhikena Purvena sutra in base 10, with the result that decimal strings are calculated. This 
paper discusses the results obtained when the Ekadhikena Purvena sutra is applied to binary 
numbers (i.e. base 2), with the resultant generation of a recurring binary string for 1/N. It was 
found that, when the computation is done in binary, a typical home computer can generate all the 
digits in the cyclic string related to 1/N at a rate several orders of magnitude higher than when the 
sutra is applied to decimal numbers. Such an application of the sutra thus hugely increases the rate 
at which the number N can be confirmed prime or not. 

Background and Introduction: Prime Numbers and Fermat’s Little Theorem 

Some important cryptographic algorithms critically depend on the fact that the prime factorization 
of very large numbers can take a long time. For many applications, the fast identification of large 
primes (often with several hundred digits) becomes very important. 

Many primality tests have been developed and improved upon over the last century. The most 
obvious test if that of trial division: Given an input number n, check whether any prime integer m 
from 2 to √𝑛 evenly divides n. 

Probabilistic tests provide provable bounds on the probability of being fooled by a composite 
number. Some such tests are the Fermat Primality test and the Miller-Rabin test. 

Deterministic Tests provide a definite determination of a prime number. Examples of such tests 
are the Pocklington Primality test, as well as the AKS Primality test. 

Fermat’s Primality test is based on Fermat’s Little Theorem1 which states that: 

If p is prime and a is not divisible by p, then: 

𝑎!!! ≡ 1(mod 𝑝) 

(a can be any base: a = 2, 3, 4, …) 

	  



	

This means that 
!!!!

!
   has a remainder of 1 

We can also write: 

                                      !
!!!

!
= Quotient + !

!
     where the remainder = 1 

Some examples follow. 

Example 1 
7 is PRIME:    Choose base 10 

 
 
 
 

!"!

!
   = 142857. 142857  

         = 142857 + !
!
        where !

!
= 0. 142857 

 
 Here, the remainder is 1. 

It can, furthermore, be noted that the decimal string for !
!
  has 7 – 1 = 6 digits before 

recurrence. Also (7 – 1) is divisible by the number of digits in the recurring decimal string:  

    (!!!)
!

= 1 

Example 2 
79 is PRIME:    Choose base 10 
 
 
 
 
!"!"!!

!"
  =  !"

!"

!"
=  1.26582278481 01265822… × 1076 +   0.  0126582278481  

   
                   =  1.26582278481 0126582278481 0126582278481…  𝑥 1076  +   !

!"
 

              where !
!"
= 0. 0126582278481 

 
Again, the remainder is 1. Also, the decimal string for !

!"
  has 13 digits before recurrence.  

We find that 

   !"!!
!"

  = !"
!"

  =  6 
 

So (79 – 1) is divisible by the number of digits in the recurring decimal string. 

	  



	
	

Example 3 

27 is not prime:    Choose base 10 
!"!"!!

!"
  =  !"

!"

!"
= 3 703 703 703 703 703 703 703 703. 703 	

										= 3 703 703 703 703 703 703 703 703  +  !"
!"
					where  !"

!"
= 0. 703       

Here the remainder is 19, not 1. Also, the decimal string for !
!"

  has 3 digits before recurrence.  

We find that 

   !"!!
!

  = !"
!

  =   8. 6 
 

So (27 – 1) is NOT divisible by the number of digits in the recurring decimal string. 

Fermat’s Little Theorem in Terms of (𝑵!𝟏
𝒙
) = 𝒌 

The preceding examples illustrate that Fermat’s Little Theorem can be restated as follows: If p is 
prime and a is not divisible by p, then: 

𝑝 − 1 ≡ 𝑘(mod 𝑥) 
 

where k is a whole number and x is the number of recurring digits in the cyclic string for !
!
 , 

provided that the string is in the base a. This provision is linked to theorem 88 by Hardy and 
Wright2 and is discussed in the section entitled “More on the k-values and the ekadhika”. 

Example 4 

7 is PRIME:    Choose base 2 
!!!!

!
= !!

!
  =  !"

!
  =  9. 142857 

                                    = 9 + !
!
                  where !

!
=  0. 142857 

 
Using base 2, the remainder is still found to be 1. 

However, to correctly investigate the k-value for a number N when using a base 2, it is necessary 
that the number of recurring digits x be determined for N in binary, not decimal. The binary 
representation of N = 7 is 111. 

The binary string for !
!
 is:  !

!!!
= 0. 001. Here there are x = 3 recurring binary digits in the 

 string.  

Using    (!!!)
!

= 𝑘       we find that       !!!
!

  = !
!
  =  2 

So (7 – 1) is divisible by the number of digits in the recurring binary string. 

 

 



	

Example 5 

79 is PRIME:    Choose base 2 
!!"!!

!"
  =   !

!"

!"
   

 
=   3 825 714 619 033 636 628 817. 0126582278481   

                     = 3825714619033636628817   +   !
!"

        

where !
!"

 = 0.0126582278481    

With base 2, the remainder is found to be 1. The binary representation of N = 79 is 1001111. 

The binary string for !
!"

 is: 

  !
!""!!!!

= 0. 000000110011110110010001110100101010001 

Here there are x = 39 recurring digits in the binary string. 

Using      (!!!)
!

= 𝑘     we find that    !"!!
!"

  = !"
!"

  =  2 

So (79 – 1) is divisible by the number of digits in the recurring binary string. 

Example 6 
27 is not prime:    Choose base 2 
 

!!"!!

!"
  =  !

!"

!"
 = 2485513. 481  = 2485513 +  !"

!"
           where !"

!"
= 0. 481 

Here the remainder is 13, not 1. The binary representation of 27 is 11011. 

The binary string for !
!"

 is:   !
!!"!!

= 0. 000010010111101101. Here there are x = 18  

recurring binary digits in the string. 

Using  (!!!)
!

= 𝑘     we find that     !"!!
!"

  = !"
!"
= 1. 4 

So (27 – 1) is NOT divisible by the number of digits in the recurring binary string. 

The Fermat Primality Test and Pseudoprimes 

Examples 1, 2, 4 and 5 demonstrate how, for any prime number N, (and any randomly chosen 

 base a)  !
!!!

!
   always yields a remainder of 1. They also demonstrate how, for a prime,  

 (!!!)
!

= 𝑘 always yields a whole number k-value, where x is the number of recurring digits in  

the string for !
!

, provided that the string is calculated in the base a.  

Examples 3 and 6 demonstrate how most non-primes yield remainders which are unequal to 1, 
and k-values which are not whole numbers. So, the converse of Fermat’s Little Theorem holds 
true in most cases,  

i.e. If  !
!!!

!
   yields a remainder of 1, or if (N – 1) is divisible by x, then N is prime.  



	
	

However, the conditions stated above cannot be used as a fool-proof test for primality, as some 
compound numbers - although in the minority - also meet these requirements. 

Example 7 

33 is not prime:    Choose base 10 

	

								!"
!!!!

!!
  =   !"

!"

!!
=   3030303030303030303030303030303. 03  

                  =   3030303030303030303030303030303 + !
!!

    where !
!!
= 0. 03 

Contrary to what might be expected, we see that, while 33 is not a prime number, the remainder is 
found to equal 1. Also, the decimal string for !

!!
  has 2 digits before recurrence.  

Testing with  (!!!)
!

= 𝑘  we find that  !!!!
!

  = !"
!

  =  16  

So here, for a non-prime, k is a whole number. 

Example 8 

However, if we choose base 2: 

               !
!!!!

!!
  =  !

!"

!!
=  130150524. 12	

                   =  130150524 +  !
!!

     where    !
!!
= 0. 12 

Here we find that the remainder is not 1. Furthermore, the binary representation of 33 is 100001. 
The binary string for !

!!
 is:   !

!!
  =  !

!""""!
=  0. 0000011111.  

There are x = 10 recurring binary digits in the string. 

Using (!!!)
!

= 𝑘  we find that   !!!!
!"

  = !"
!"

  =  3.2 

So (33 – 1) is NOT divisible by the number of digits in the recurring binary string. 

Thus, by inspection, we see that - while a prime number always yields a remainder of 1 (or a 
whole number k-value) - a non-prime may do so as well, depending on which base is chosen.  

A non-prime which yields a whole number k-value is called a Fermat pseudoprime. Below 
50	000, only 1.23 % of numbers which yield whole number k-values (for base 10) are 
pseudoprimes. 

The conventional Fermat Probability test applied to a number N follows the procedure outlined in 
Column 1 of Table 1.  

 

 

 

 



	

Test using  
𝑎!!! ≡ 1(𝑚𝑜𝑑 𝑝) 

 

Test using 
 (!!!)

!
= 𝑘 

 
 

- Choose a random base a. 
- Find the remainder when 𝑎!!! is 

divided by N.  
- If the remainder is not 1, N is not 

prime. (END OF TEST) 
- If the remainder is 1, there is a large 

probability that N is prime. In this 
case, choose another random base a 
and repeat the test until a remainder 
unequal to 1 is found. 

- The more random a-values having 
been tested, and a remainder of 1 
having always been found, the 
greater the probability that N is 
indeed prime. 

 

 
- Choose a base a. 
- Find the number of digits x in the 

recurring string related to the base a. 
- Calculate (!!!)

!
= 𝑘 

- If k is not a whole number, N not 
prime. (END OF TEST)  

- If k is a whole number, and k = 1 then 
N is prime. 

- If k is a whole number and 𝑘 ≠ 1 (*) 

then apply one further test (involving 
x) to identify a factor of a potential 
pseudoprime. 

- If a factor is found, N is not prime. If a 
factor (≤ 𝑁  ) is not found, N is 
prime. 

 

Table 1 

(*) It appears that, within the range of values thus far investigated, when 𝑘 < 8 (for base 10) and 
when 𝑘 < 9  (for base 2) then N is always prime – see discussion later. 

The Fermat Prime test using 𝒂𝒑!𝟏 ≡ 𝟏(mod 𝒑) has Several Drawbacks: 

1. It is not deterministic: an N-value can only be identified as having a high probability of 
being prime. 

2. For very large numbers, many calculation steps are required (in a division process) to 
eventually yield a remainder of 1. This may take a long time and can use up a large 
amount of computing power. 

3. There are some pseudoprimes (called Carmichael numbers) which ALWAYS yield 
remainders of 1, no matter what base is chosen. Such compound numbers are thus always 
incorrectly identified as primes. 

4. Even if a number N is indeed prime, many bases may have to be investigated before its 
primality can be confirmed. 

5. The test does not suggest a method to eliminate a pseudoprime - other than by eventually 
finding a remainder unequal to 1 - once the appropriate base (if it exists) happens to be 
chosen. 

	  



	
	

The Fermat Prime test using 𝒌 = 𝑵!𝟏
𝒙

 and Vedic Mathematics 

This paper discusses the results of an investigation using Vedic Mathematics, in conjunction with 
the procedure outlined in Column 2 of Table 1, to help determine the primality of a number N. 
The Ekadikena Purvena sutra is employed to determine the number of recurring digits, x, in the 
binary string for !

!
 .  

This value can be used to determine the k-value where 𝑘 = !!!
!

.  

If k = 1, N is identified as prime. If k is a whole number greater than 1 (* see note previous page) 
an additional test, also using x, is carried out. This test can be used to successfully sift out 
pseudoprimes.  

The method outlined in this paper (although it still has a probabilistic component, as will soon be 
explained) has been used to identify all prime numbers below 500	000. It is suggested that the 
Fermat Primality test done in this way, addresses some of the drawbacks listed in the previous 
section for the conventional Fermat test: Use of the algorithm stated in the sutra may reduce 
computing time and power, while the x-value (which is found by application of the sutra) is used 
to identify the factors of all pseudoprimes, even the Carmichael numbers. 

The Ekadhikena Purvena Sutra 

Sri Tirthaji3 showed that the full recurring decimal string for every number N, ending on a 1, 3, 7 
or 9, can easily be found by using the Ekadhikena Purvena division technique.  

The sutra states: “By one more than the previous one”.  

The generation of the decimal string for !
!"

 is demonstrated below: 

The denominator consists of the two digits 1 and 9. Defining the “previous one” as the digit 
before the 9, i.e. the 1 in the case of 19: “One more than the previous one” is:  1 + 1 = 2. This 2 
(called the “ekadhika”) is now the new divisor (from left to right), or also the new multiplier 
(from right to left).  

For string generation from left to right, instead of attempting to divide 19 into 1 (according to the 
conventional method), the procedure is now to simply divide 2 into 1 instead, i.e. 

2 divided into 1 equals 0 remainder 1. For this, write:  
10  

with the rem 1 a superscript to the left of the quotient 0. Then divide 2 into 10, giving 5 rem 0: 
 10 05 

Then divide 2 into 5, giving 2 rem 1:  

10 05 12 

Division of 2 into 12 then yields 6 rem 0: 
10 05 12 06 



	

 Division of 2 into 6 yields 3 rem 0: 
10 05 12 06 03 

Division of 2 into 3 yields 1 rem 1: 
10 05 12 06 03 11 

Division of 2 into 11 yields 5 rem 1: 
10 05 12 06 03 11 15 

Proceeding thus, the 18 digits of the recurring string  
10 05 12 06 03 11 15 17 18 09 14 7 13 16 08 04 02 01are generated. 

Alternatively, the digits in the decimal string can also be generated from right to left in the 
following way: 

Starting with 1 on the very right, multiply the 1 by 2 to obtain 2; then multiply this product by 2 
again to obtain 4; then multiply 4 by 2 to obtain 8; then multiply 8 by 2 to get 16,  

i.e.               16 8 4 2 1   

where the ten’s digit of the 16 is written as a superscript 1, ready to be added (“carried over”) onto 
the product of the next multiplication by 2. The next step is to multiply only the 6 by 2 to get 12, 
after which the superscript 1 (from the ten’s digit of 16) is added onto 12 to get 13, 

 i.e.                    13 6 8 4 2 1 

Now multiply only the 3 by 2, then add 1 to get 7. Multiply 7 by 2 to get 14, and write the ten’s 
digit of the 14 as a superscript 1: 

            14 7 13 16 8 4 2 1 

Proceeding thus, the complete cyclic string is obtained: 

          10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1 

The number of steps in the calculation can, furthermore, be halved by noting that the string of 
digits comprising the first half of the decimal expansion, added to the string of digits making up 
the second half, yields a sequence of nines, i.e. 

052631578  + 
947368421  
999999999 

 
This phenomenon is an application of the Nikhilam Navatascaramam Dasatah sutra: 

 “All from 9 and the last from 10” because, when the digits in the first half of the string are 
subtracted from 9, the digits in the second half of the string are obtained. “The last from 10” never 
features, as there is no last digit in a non-terminating string. 

 



	
	

Explanation of the Working of the Ekadhikena Purvena Sutra 

The recurring decimal string associated with a fraction is a geometric series of the numbers 
generated by dividing or multiplying successive terms by a common ratio related to the 
“ekadhika”. 

In general, any perfectly recurring decimal for 1/N can be written as: 

 

 !
!
=  !

!!!

!
!
!!!   The ekadhika is then (!!!)

!"
. 

The Ekadhikena Purvena Sutra applied to 𝟏
𝑵

  where N has a Final Digit 1, 3 or 7 

When the sutra (used on numbers to base 10) refers to the “previous one” it must always be 
“previous to” the digit 10 – 1 = 9 in the denominator of a fraction. So that the sutra can be applied 
to decimal rational numbers (in form !

!
 ) with denominators ending also on the digits 1, 3 and 7, 

such fractions can be manipulated as follows to have a last digit equal to 9: 

      !
!"
=  !

!"
× !
!
= !

!"#
                    !

!"
=  !

!"
× !
!
= !

!"
    !

!
=  !

!
× !
!
= !

!"
  

For instance:   !
!"
=  !

!"
× !
!
= !

!"
 

For 39, “one more than the previous one” is 3 + 1 = 4. The ekadhika is thus 4. For right to left 
string generation, start with the numerator 3 as the last digit before recurrence, and then multiply 
successively with 4, thereby obtaining: 

      30 27 36 9 12 3   

Thus    !
!"

  =   0. 076923   

The process repeats until a remainder of 3 is once again reached. Because 3 is the very first 
multiplicand, any further steps in the process yield the same sequence of digits again. 

 

Note:   Employing  !
!
=  !

!!!

!
!
!!!   :    !

!"
= 3× !

!"
=  3× !

!"

!
!
!!!     

The ekadhika = 40/10 = 4  

The ekadhika is seen here to be a multiple of 10 (as the decimal system employs a base 10). 

Computer Program (to Generate Decimal Strings) and the Method of Rooting Out 
Pseudoprimes 

The results of employing a computer program, using the Ekadhikena algorithm, to generate the 
decimal strings for all N-values (ending on 1, 3, 7 or 9 -  this includes all primes excluding 2 and 
5) between 3 and 10	000 have already been reported in a previous article4. The lengths x of the 
strings before recurrence were found, which then enabled the testing for  

primality (testing whether 𝑘 = (!!!)
!

 is a whole number or not). The method of rooting out  



	

the pseudoprimes (with reasons) was also discussed in detail in the above-mentioned article. It 
was reported how all primes below 10	000 were successfully identified, and all pseudoprimes 
were easily eliminated using a method which is again briefly outlined (without proof) below: 

If N happens to be a pseudoprime (base a) it satisfies the criterion that, 

𝑘 =
𝑁 − 1
𝑥  

is a whole number. Thus also 𝑁 = 𝑘𝑥 + 1 . It can be shown that: 

If N is a pseudoprime: It has factors in the form (𝑑𝑥 + 1) where d < k  

Therefore, once N is found to have a whole number k-value greater than 1, it is tested for a factor 
(𝑑𝑥 + 1) ≤ 𝑁. If no such factor is found, then N is prime. 

Since the writing of the previous article, additional analysis has successfully revealed all the 5133 
primes below 50	000, as well as all the pseudoprimes (base 10) below 50	000. The list of all the 
64 Fermat pseudoprimes (base 10) below 50 000 is given in Table 2. 

Note that the smallest k-value is 8. The second smallest is 15. 

 The 64 Pseudoprimes (base 10) below N = 50 000 
(1.23% of the 5 197 numbers below 50 000 with whole number k-values) 

 

 

 

 

 

 

 

 

 

Table 2 

	  



	
	

The Generation of Binary Strings Using the Ekadhikena Purvena Sutra 

The use of decimal strings for prime number identification was found not to be ideal. Using the 
computer program on a home PC to obtain the decimal strings of the reciprocals of (relatively 
small) primes close to 1	000	000, proved eventually to take up far too much time. 

For example, while the prime 4007 (with 4006 recurring digits and thus k = 1) took but 0.47 
seconds, and the prime 8017 (also with k = 1) took but 1.81 seconds to identify, the prime 80051 
(also with k = 1) took 4 minutes 13 seconds to identify. The prime 999	983 (also with k = 1) took 
about 3.2 hours to identify. However, a prime with a much larger k-value, and thus less recurring 
digits x, took far less time to identify: for instance, 43 037 (with only 29 recurring digits and thus 
with k = 1484) took but 0.03 seconds to identify. 

Besides attempts to improve the computer programming methods and efficiency, as well as using 
a faster and more efficient computer, it was decided to investigate whether application of the 
Ekadhikena Purvena Sutra on binary (instead of decimal) numbers might improve the speed of 
prime number identification. An example of how this can be done is given below. 

Example 9 

13 in binary is 1101. To find the binary string of !
!!"!

 proceed as follows: 

By one more than the one before “110”:     110 + 1 = 111     The ekadhika is thus 111.  

Starting with 1, and using 111 as the multiplier from right to left, and carrying and adding 
successive binary digits, the following binary string is obtained:            

 

 

Thus:     !
!!"!

= 0. 000100 111011  

There are x = 12 binary digits in one recurring cycle of this string.  

Using (!!!)
!

= 𝑘  we find that   !"!!
!"

= 1 .  

With k = 1, N = 13 is correctly identified as prime. 

The algorithm of the sutra, employed to binary !
!"

 , thus proceeds as follows: 

 

 

 

              

                                                                                                             etc. 

Figure 1 



	

Comparison of k-values in Binary and in Decimal 

For the case of  !
!" 

: 

In decimal:  !
!"
= 0. 076923 𝑥 = 6     and    𝑘 = (!!!)

!
= (!"!!)

!
= 2 

In binary: !
!!"!

= 0. 000100 111011  𝑥 = 12   and    𝑘 = (!!!)
!

= (!"!!)
!"

= 1 

So, although the k-values differ, they are whole numbers in both bases. Furthermore: 

For  !
!"

 :            

 

076+
924
999

 

while for   !
!!"!

 : 

 

000100+
111011
111111

 

!
!"

 in decimal displays the working of the sutra because the first half of one cycle of therecurring 

string adds to the second half to yield a string of 9’s.  

But !
!"

 in binary displays an adapted version of this sutra, i.e. All from 1 and the last from 2, 

because the two halves of its cyclic string yield a string of 1’s when added. 

This last phenomenon is found to occur for all even-numbered strings related to prime numbers 
(proof given in a previous article4), but it only occurs occasionally for a pseudoprimes. This 
phenomenon is briefly touched upon later. 

Using binary numbers, Fermat’s prime test is carried out in base 2. The Ekadhikena Purvena sutra, 
applied to binary numbers, uses: By one more than the one before the 1, instead of By one more 
than the one before the 9, as is the case for decimal numbers. 

This addition effectively makes the right-to-left multiplier (or left-to-right divisor) - the Ekadhika 
- a multiple of 2 (instead of a multiple of 10, as is the case when the Ekadhika is used to generate 
a decimal string). 

A binary string is an infinite geometric series based on powers of 2. The following example 

displays the working of the “by one more than the one before” concept employed by the 

Ekadhikena sutra applied to !
!
 in binary. It shows how the recurring string for !

!
 consists of an 

infinite number of successive powers of  !
!
= !

!!
 (≡ 0.001 in binary) added together. It also clearly 

demonstrates why there can be only three digits before recurrence in the binary string for !
!
 (thus 

making k = 2). 



	
	

Example 10 
 

 

 

 

 

 

When right-to-left string generation is done in binary, the very last digit before recurrence (i.e. the 
first digit to be multiplied by the Ekadhika) is always a 1. Because only 1’s and 0’s are employed, 
the algorithm is found to generate recurring strings much faster than is the case for decimal 
strings. 

Computer Program to Generate Binary Strings for Numbers Below 500 000  

A computer program was written which employs the Ekadhikena sutra adapted for binary 
numbers. All numbers ending in 1, 3, 7 or 9 below 500	000 (in decimal) were converted into 
binary, and the lengths of their binary strings were determined by the program. A time 
comparison was done between the rate of prime number identification in binary versus in decimal. 
An example of the identification of a prime number close to 500	000 follows. 

Example 11 

Test N = 481	433 (prime) 

Convert into binary:  !
!"#!$$

≡ !
!!!"!"!!"""!""!!""!

 

 
Calculate the ekadhika: 111010110001001100+1 = 111010110001001101 

  
Proceed with right to left multiplication of 1 with the ekadhika, to obtain the full cyclic string 
shown on the next two pages. 

 
Number of recurring digits: x = 8597    𝑘 = !"#!$$!!

!"#$
= 56  

 
Time for calculation of x: 0.11 seconds. 

Time for confirmation that not pseudoprime (test for a factor (𝑑𝑥 + 1) where d < k):~ 0.4  

 
1

481433
≡

1
1110101100010011001

 

 
 



	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
	

 

 

 

 

 

 

 

 

 

 

 

 

 

Results of Testing for Primality, and the Time Period to Generate Binary Strings 

Between 3 and 500 000: 41 681 numbers were found to have whole number k-values. 

Of these, 144 (0.35%) were identified as base 2 pseudoprimes (Poulet numbers) by finding that 
they were divisible by a factor (𝑑𝑥 + 1) with d < k. Thus 41 681 – 144 = 41537 primes were 
found. Including 2, all the 41 538 PRIMES below 500	000 were thus successfully identified. 

The time for identification using binary strings, is much faster than when using decimal strings 
(refer to Tables 3 and 4). 

The identification time depends on the 𝑥-value, i.e. the number of binary digits occurring in one 
cycle. 

Thus N–values with k = 1 take the longest time to confirm their prime status: the longest string 
below 500	000 (i.e. the string for 499	979) took about 5 seconds to generate. Such strings do not 
need to be subjected to a further pseudoprime test. 

The strings for numbers with larger k-values (thus with relatively shorter cyclic strings) were 
generated much quicker. For instance, the string for 498961, with k = 10, was found within 0.56 
seconds.  

Although all numbers (ending on the digits 1, 3, 7 and 9) below 500	000 were tested, several 
larger numbers were tested at random: While the string for 1	900	043 (with k = 1) was found in 23 
seconds, the string for 1	900	009 (with k = 72) was generated in 0.4 seconds. The generation of 
the string for a binary number near 10	000	000 (with k = 100) took only about 1 second. 



	

Table 4 shows a comparison of the maximum time (i.e. with k = 1) it takes for approximately 
equal length strings to be generated in both base 10 and base 2. The difference between the 
generation time for decimal and binary strings was found to increase substantially as the numbers 
grow larger. 

Table 3 

 

 

 

 

 

 

 

	
 

 

Table 3 
Some k-values for primes in range 5000 to 500 000 

 
 
                                                                             

Decimal String 
with k = 1 

Generation time (s) Binary String 
with k = 1 

Generation time (s) 

 
20 047 

 
90 011 

 
499 976 

 
999 983 

 
- 

 
11 

 
300 

 
960 

 
11 400 

 
- 

 
20029 

 
90 011 

 
499 976 

 
1 000 003 

 
near ten million 

 

 
0.2 

 
0.8 

 
5.1 

 
8.7 

 
117 

Table 4 

	  



	
	

The Rooting out of the Pseudoprimes 

With its whole number k-value status established, each of the 144 pseudoprimes below 500 000 
was identified as such in an additional time of less than 0.001 seconds. This was done by testing 
all numbers with k > 1 for a factor 𝑑𝑥 + 1 < 𝑁. See Table 5 for the results.  

Some Important Observations with Regards to the Pseudoprimes and their Testing: 

1. In decimal (for all numbers tested below 50	000) no pseudoprime revealed a k-value less than 
8. In binary (for all numbers tested below 500	000) no pseudoprime was found to have a k-value 
less than 9. The calculation time for the recurring string of a pseudoprime is thus generally far less 
than for a real prime of approximately equal size. The reason for large pseudoprime k-values (thus 
relatively shorter recurring strings) lies in the fact that a pseudoprime must have at least two 
factors, both of which themselves, can be written in terms of x. An attempt at illustrating this is 
given below: 

 
Say N has two unequal prime factors, i.e.   𝑁 = (𝑑!𝑥 + 1)(𝑑!𝑥 + 1) 

then       𝑘𝑥 + 1 = (𝑑!𝑥 + 1)(𝑑!𝑥 + 1) 

which yields    𝑘 = 𝑑!𝑑!𝑥 + 𝑑! + 𝑑!                    if 𝑥 ≠ 0 

If 𝑑! and 𝑑! are integers, their smallest possible values are 1 and 2 respectively. 

Assuming x ≥ 2 then yields:  𝑘 ≥ 1 2 2 + 1+ 2 

Thus     𝑘 ≥ 7 

However, many d-values are not integers greater than 1 -  many have fractional values lying 
between 0 and 1. In such cases, the x-value must be big enough to still yield a relatively large k-
value. The above illustration, therefore, does not cover all eventualities. 

Furthermore, the smallest factor must have the property:     𝑑!𝑥 + 1 < 𝑁 

Thus    𝑑!𝑥 + 1 ! < 𝑘𝑥 + 1 

and                     𝑘 > (𝑑!)!𝑥 + 2𝑑!          if 𝑥 ≠ 0 

Substitution of 𝑑! = 1 then yields                 𝑘 > 𝑥 + 2  

This suggests that a pseudoprime with two factors having 𝑑! and 𝑑! greater or equal to 1, implies 
x < k. The data in Table 5 is in accord with this observation. Also, 𝑑! and 𝑑! are integers. The 
only three N-values (with two factors) in Table 5 with non-integer d! and 𝑑!-values less than 1, 
have x > k. These numbers are 4371, 8911 and 25761.  

Table 5 shows that pseudoprimes with three and four factors were also found. Except for one 
number (294409, with x = 36; factors 37, 73 and 109; and respective d-values 1, 2 and 3) all such 
pseudoprimes have one or more non-integer d-values. In fact (in the case of there being more than 
two factors), very few integer d-values occur, but when they do, it is invariably for cases where x 
< k. 



	

If it can be conclusively established why 𝑘 ≥ 9 for base 2 pseudoprimes, the prime test can be 
adapted to immediately confirm the primality of any N-value with 𝑘 ≤ 8. Within the range 
investigated, about 88% of all whole number k-values lie below 9. If this trend extrapolates to 
larger numbers, many more primes may thus be identified without the need for any further testing. 

2. Due to the necessity of testing for non-integer d-values during the pseudoprime test, the overall 
method still has a probabilistic component: If no factor has yet been found by the time one tests, 
say, for for d = 999999/1000000, what limit must be set to stop the test and confirm that N is 
indeed prime? (Or, a limit having been set and no factor found within that limit, what is the 
probability than N is prime?) The limit placed on both the numerator and the denominator of d in 
the computer program employed in the current investigation, was about 2000. Within the range of 
numbers investigated, no pseudoprime “slipped through unidentified” using this criterion. 

3. Figure 2 shows the percentage occurrence of whole number k-values within the range 
investigated. For the 41 681 numbers below 500	000 with whole number k-values: 

88% have  1 ≤ 𝑘 ≤ 8  (no pseudoprimes in this region). 

11.2% have  9 ≤ 𝑘 ≤ 200  (28 pseudoprimes found) 

0.8% have  𝑘 >  200  (116 pseudoprimes found) 

Also, 37.3 % have k = 1, thus confirming them prime. 

 
Looked at in a different way: (See Figures 3 and 4).  

For binary numbers, only 0.35% (144 out of 41681) of all the whole number k-values below 
500	000 are pseudoprimes. 

Only 28 of these (~ 0.07%) are found amongst the 41373 numbers with k-values less than 221.  

116 pseudoprimes are amongst the 308 numbers (~38% of them) which have the biggest k-values 
(with k’s between 221 and 16	789).  

With reference to the last point, one might thus reasonably conclude that, if a tested binary 
number has a k-value greater than about 220, there is an approximate 40% chance that the number 
is a pseudoprime 

Figure 4 illustrates the density of occurrence of base 2 pseudoprimes with 𝑘 ≥ 221. 
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4. Using the 𝑑𝑥 + 1 < 𝑁 pseudoprime test, while all factors of pseudoprimes were found in 
less than 0.001 seconds, all actual prime numbers (with k-values greater than 1) took much longer 
– between about 0.3 to 0.6 seconds - to be checked for factors in form (𝑑𝑥 + 1). The 0.6 second 
maximum time was, of course, determined by the limit set on the d-value. When no such factor 
was found, the test was terminated. It was observed that: Just by ordering numbers in terms of the 
run-time for the pseudoprime test, all pseudoprimes were immediately sifted out. A possible 
criterion for pseudoprime identification could thus be: Within a certain range of numbers, if the 
run-time for the pseudoprime test is greater than a pre-determined cut-off time, one can almost be 
certain that N is prime. 

5. All prime numbers N with even-numbered strings have the property that the first half of the 
binary string for 1/N adds to the second half to give a string of 1’s (the adapted Nikilam sutra: “All 
from 1 and the last from 2”). There are 134 pseudoprimes (out of the total 144 pseudoprimes 
below 500	000) with even-numbered strings. Only 22 of them concur with the adapted Nikilam 
sutra. Thus, the overwhelming majority of pseudoprimes (84%) do not possess this property. This 
difference between a pseudoprime and a prime might be usefully employed as an additional factor 
in a primality test procedure. 

6. A study of the data in Table 5 shows that: For a pseudoprime N, the number of recurring digits 
in 1/N (i.e. x) is the lowest common multiple (LCM) of the number of recurring digits (say, 𝑥!,𝑥!, 
etc.) in each of the cyclic binary strings related to the respective prime factors (say (𝑑!𝑥 + 1) , 
(𝑑!𝑥 + 1) etc.) of N. This accords with the fact that each factor must itself be one plus a multiple 
(or submultiple) of x. The next example serves to illustrate this observation. 

Example 12 

For N = 90	751 with x = 75 and k = 1210 and factors 151 and 601 (both prime), the respective 
values for 𝑑! and 𝑑! are 2 and 8. 

 
90751 = 𝑘𝑥 + 1 = 1210 75 + 1 

Also 𝑑!𝑥 + 1 = 2 75 + 1 = 151      and    𝑑!𝑥 + 1 = 8 75 + 1 = 601     

  

The prime factors 151 and 601, themselves, have respective x-values (i.e. number of recurring 
digits in the strings for !

!"!
 and !

!"#
 ) of  𝑥! = 15 and 𝑥! = 25.  

Thus 𝑘!𝑥! + 1 = 10 15 + 1 = 151      and    𝑘!𝑥! + 1 = 24 25 + 1 = 601   

Both 15 and 25 are divisors of 75. Thus 𝑥! and 𝑥! are divisors of x. Thus, x is the LCM of 𝑥! and 
𝑥!. 

More on k-values and the Ekadhika 

To paraphrase J. Pickles (2000)5:  

It is evident that a cycle of length (N – 1) is the longest that can be achieved with the 
divisor N. The successive steps of division by N can never be exact, or the decimal 



	
	

would terminate, and there are only (N – 1) possible remainders. Once these are 
exhausted, the sequence must repeat. 
 

The maximum number of digits must be (N – 1). Why do some numbers have the property that the 
sequence of numbers in a cycle is only half this maximum limit (i.e. k = 2) or one third of this 
maximum limit (i.e. k = 3) etc.? 

The answer to this question lies in what has already been pointed out in Example 10, where 1/7 in 
binary must necessarily only have 3 binary digits before recurrence. (It is the same reason why !

!!!
 

in decimal must also have only three decimal digits in one recurring cycle.) 

Hardy and Wright2 address the answer to this question in Theorem 88 of the book The Theory of 
Numbers. 

Theorem 88 of Hardy and Wright:  

𝑎!  ≡  1 (mod 𝑁) has a smallest solution x which is a divisor of Φ(N) 
 

 where Φ(N) is equal to the number of integers smaller than N which are relatively 
prime (co-prime).  

 

Stated in another way: If  !
!

!
 is found and a remainder equal to 1 is obtained (i.e. recurrence 

occurs), then the smallest possible value for x is a divisor of Φ(N). Thus Φ(N) divided by x must 

have an integer value, i.e. !(!)
!

= 𝑘. Since all integers smaller than a prime number are relatively 

prime to it, Φ(N) = N – 1 for a prime. Therefore, for a prime number: !!!
!
= 𝑘. It also follows 

that, if x = N – 1, (thus k = 1) N is always prime.  

For a compound number, since there are some numbers below it which are not relatively prime, it 
follows that (N – 1) = Φ(N) + np, where np represents the number of integers smaller than N which 
are not co-primes. In the case of a pseudoprime, it just so happens that np is also divisible by N, 
which is usually not the case for a non-prime. This has been illustrated in a previous article4. 

In a brief analysis, Jeremy Pickles5 uses several examples to show that there is a relationship 
between the ekadhika and the k-value: The ekadhika is either a perfect power of k, or it is a 
polynomial residue of the divisor N. The following examples illustrate this phenomenon: 

 

Example 13 

In base10: !
!"#

= !
!"#

× !
!
= !

!"#
        Use of the sutra shows that x = 81, thus k = 2. 

Here the ekadhika is 48 +  1 = 49 = 7!. We thus see that the ekadhika is a power of k = 2. 

 



	

Example 14 

In base10: !
!"#

= !
!"#

× !
!
= !

!!"
        Use of the sutra shows that x = 42, thus k = 3. 

Here the ekadhika is   88 +  1 = 89 = (6)! − 1(127)  

We can also write:   !"
!"#

= !!

!"#
− 1       

We see thus that the ekadhika is the cubic (i.e. power k = 3) residue of the divisor 127. 

Example 15 

In base 2: for !
!!"

≡ !
!!!"""!

 :              Use of the sutra shows that x = 28, thus k = 4. 

Here the ekadhika is 111000+  1 = 111001 ≡ 57 = (12)! − 183(113)  

We can also write:   !"
!!"

= !"!

!!"
− 183 

We see thus that the ekadhika is the quartic (i.e. power k = 4) residue of the divisor 113. 

In general, the relationship between the ekadhika and the k-value (and thus also the number of 
digits before recurrence) is thus: 

    ekadhika =  𝑦! − 𝑞𝑁 

where both y and q are integers, and q is the quotient when yk is divided by N. 

We can also write:  𝑦! ≡ ekadhika(mod 𝑁) 

It is of interest to compare this to Fermat’s Little Theorem: 𝑎!!! ≡ 1(mod 𝑝) 

The k-values for one number also differ depending on the base used, as shown in Figure 4. 

For !
!
 in decimal:   k = 1    ekadhika = 5 = (12)! − 1(7) 

For !
!
 in binary:     k = 2    ekadhika = 4 = (2)! 

 
 
 
 
 
 
 
 
 
 

Figure 4 

Summary and Suggestions for Further Investigation 

1. Compared to decimal string generation, a computer program (employing the Ekadhikena 
Purvena sutra) can generate the number of of recurring digits in the binary string for !

!
 at a much 



	
	

higher rate. The difference in the generation rate of binary versus decimal strings increases with 
N. 

2. Binary numbers up to about 10 million have been investigated. The maximum time (if k = 1) to 
generate the recurring string for a number close to 10! is approximately 2 minutes. Although this 
is several orders of magnitude faster than when the sutra is applied to decimal numbers, the 
current method would still take an impossibly long time to identify primes with several hundred 
digits (i.e. those used in cryptology). 

3. The programming for this investigation was done using TrueBasic. The algorithm is currently 
being rewritten in C++. By using more efficient data structures, calculation times may be reduced 
significantly. 

4. Employment of hogher-performance computing hardware and more efficient implementation of 
the algorithms should enable far larger prime numbers to be identified using the method outlined 
in this paper. The home PC that was used in the current investigation has the following 
characteristics:        

Intel Core i5-7200U 2,5 GHz with Turbo Boost up to 3.1 GHz 

4 GB DDR4 Memory; 1000 GB HDD 

The new C++ program will be run using a faster processor and larger RAM. 

5. All prime numbers N (and several pseudoprimes) with even-numbered strings have the property 
that the first half of the binary string for 1/N adds to the second half to give a string of 1’s. It is 
planned to incorporate this property (propounded by the Nikilam sutra) into the improved C++ 
program – thus possibly reducing by up to a half the time required to generate recurring strings. 

6. Once the improvements suggested in points 3, 4 and 5, have been implemented, it is planned 
that the rate at which the improved program generates binary strings, be compared with the rates 
at which other existing methods achieve the same result. This has not yet been done. 

7. If it can be conclusively established why 𝑘 ≥ 9 for base 2 pseudoprimes, the prime test can be 
adapted to immediately confirm the primality of any N-value with 𝑘 ≤ 8. (See Figure 5) 

8. Employment of the Ekadhikena Purvena sutra to find the number of recurring digits x in a 
binary string, serves a dual purpose: Besides being able to prove primality when x = 1 (or perhaps 
even when ≤ 8), the x-value can also be used in the search for factors of pseudoprimes in the 
form 𝑑𝑥 + 1 .  However, due to the necessity of testing for non-integer d-values during the 
pseudoprime test, the overall method still has a probabilistic component. Further investigation 
needs to be done to find out if a limit can be set on d, below which the test can be terminated, and 
N confirmed, unquestionably, to be prime. Alternatively, a limit to d having been set, and no 
factor found within that limit, can one set a value to the probability that N is prime? 

9. Do the Carmichael numbers have any particular pattern in their k-values which make them 
always pass the conventional Fermat Primality test, no matter what base is chosen? This is a topic 
for further investigation. 

 



	

10. Another topic for investigation is the relationship between the formulas: 

        𝑦! ≡ ekadhika(mod 𝑁) and  𝑎!!! ≡ 1(mod 𝑝)  discussed in the previous section. 

11. It is proposed that, within a large range of data, a Fourier analysis be done on calculated k-
values to see whether any pattern in their occurrence emerges.        
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Figure 5 
A proposed, adapted, Fermat Primality test 

(if it can conclusively be shown that no non-prime exists with 𝐤 ≤ 𝟖) 
 

 

 



	
	

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


