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Introduction 

Vedic Mathematics concepts like the nine-point circle as well as digital roots can be used to 
study various aspects of modular arithmetic, and can be of particular use in the identification 
of prime numbers. Primes are of interest, as prime factorisation is commonly used to secure 
public-key encryption systems. Finding the two prime factors of a very large prime number 
can be very difficult and time-consuming. 

This paper discusses how the prime factors of some relatively big numbers can be found by 
making use of “osculators” in the Vedic method of Division by Primes. Modular Arithmetic 
is used to help explain why the process works. Before attempting to find a factor of a number, 
it it useful to know that it is, indeed factorisable (i.e. it is not prime). Digital roots can be of 
great help in this regard as, for instance, a number (other than 3) is not prime if its digital root 
is 3, 6 or 9. (Such numbers are divisible by 3.)  

Some Important Definitions 

A prime number is an integer (a whole number) that only has 1 and itself as factors.  

Modular arithmetic involves carrying out addition (and other operations) not on a line, but 
on a circle: the values "wrap around", always staying less than a fixed number called the 
modulus. The way DVD’s store or satellites transmit large amounts of data without 
corrupting it, involves the use of modular arithmetic. Reed-Solomon error correcting codes 
employ modular arithmetic. Cryptographic codes which keep, for example, our banking 
transactions secure are also closely connected to the theory of modular arithmetic.  

The digital root of a number is found by adding all the digits in the number together. If the 
answer to this digit sum contains more than two digits, these digits are again added together. 
This process is repeated until the answer only contains one digit. For instance, the digit sum 
of 9023 is 14. The digit sum of 14 - and therefore also the final digital root of 9023 -  is 5. 

The modulo operation finds the remainder after the division of one number by another. For 
example, 15 mod 7 = 1, as there is a remainder of 1 when 15 is divided by 7. The congruence  
28 ≡ 35 (mod7) means that both 28 and 35 yield the same remainder when divided by 7. The 
congruence x ≡ 0 (mod7) means that x has a remainder of zero when divided by 7, i.e. x is 
divisible by 7. 

Identifying whether a number is Prime or not 

The process of finding a prime factor of a very large number, and thus identifying it as non-
prime, is very often based on trial and error. Modular arithmetic (as well as methods in Vedic 
Mathematics – shown in the next section) can be usefully employed to facilitate the process. 



Table 1 shows the digital roots of all the prime numbers below 200. We see (with the 
exception of the number 3) that the roots are either 1, 2, 4, 5, 7 or 8. This is because all 
numbers which have digital roots of 3, 6 or 9 are divisible by 3, and are thus not prime 
(except for the number 3 itself). 

Table 1: The Digital Roots of Primes below 200 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 2, the Sieve of Eratosthenes is shown for numbers from 1001 to 1100. The “sifting” 
(identification as non-prime) process follows the following steps: 

All even numbers (divisible by 2) and numbers ending on a 5 (divisible by 5) are eliminated 
(shaded light grey) . 

The digital roots of the remaining numbers are calculated. Those with digitals roots of 3, 6 
and 9 are also eliminated (shaded slightly darker grey). Such numbers are divisible by 3. 

 

Digital Root 1 2 3 4 5 6 7 8 9 

  2 3  5  7   
  11  13    17  
 19    23     
  29  31      
 37    41     
    43      
  47      53  
     59  61   
    67    71  
 73      79   
  83      89  
       97   
  101  103    107  
 109    113     
 127    131     
  137  139 149  151   
    157      
 163    167     
  173      179  
 181         
  191  193    197  
 199         



Table 2: The Sieve of Eratosthenes 

 

 

 

 

 

 

 

 

 

 

The remaining numbers (in white) might or might not be prime. They now need to be tested 
for divisibility by primes other than 2, 3 or 5. 

The following section explains how Modular Arithmetic can be used to help find some of the 
prime factors (specifically 7 and 13) of all the (as yet, unidentified) non-primes remaining in 
Table 2. As will be shown later, there are twelve numbers which are not prime. 

Checking for Divisibility by 7 and 13 using Modular Arithmetic 

Divisibility by 7: 

Let N be a number divisible by 7. This means that N = 7K where K is an integer. 

We can write     N = 10n an  + 10n-1 an-1 +  … + 10a1 + a0 = 7K 

                      N = 10(10n-1an + 10n-2an-1 + … + a1) + a0 = 7K 

Let (10n-1an + 10n-2an-1 + … + a1) = A and  a0 = B, then N = 10A + B = 7K 

Adding and then also subtracting 20B yields 

N = 10A + B - 20B  + 20B = 7K 

which yields 

N = 10(A - 2B) = 7(K - 3B)  

Since, 10 mod 7 = 3, for N to be divisible by 7, it follows that when the factor (A – 2B) is 
divided by 7, the remainder must be 0, i.e. (A - 2B) ≡ 0 (mod 7).  

We thus see that if  N is divisible by 7, then  N = (10A + B) ≡ (A - 2B) (mod 7). 

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 



Example: Is 2023 divisible by 7? 

A = 202, B = 3,  (A - 2B) = (202 - 2*3) = 196 

The process is now repeated for 196: 

A = 19, B = 6, (A - 2B) = (19 - 2*6) = 7 

Thus (A - 2B) ≡ 0 (mod 7), and thus 2023 is shown to be divisible by 7. 

Divisibility by 13: 

Let N be a number divisible by 13. This means that N = 13K where K is an integer. 

We can write     N = 10n an  + 10n-1 an-1 +  … + 10a1 + a0 = 13K 

                      N = 10(10n-1an + 10n-2an-1 + … + a1) + a0 = 13K 

Let (10n-1an + 10n-2an-1 + … + a1) = A and  a0 = B, then 

N = 10A + B = 13K 

Adding and then also subtracting 40B yields 

N = 10A + B - 40B  + 40B = 13K 

which yields 

N = 10(A + 4B) = 13(K - 3B)  

Since, 10 mod 13 = 10, for N to be divisible by 13, it follows that when (A + 4B) is divided 
by 13, the remainder must be 0, i.e. (A + 4B) ≡ 0 (mod 13).  

We thus see that if  N is divisible by 13, then N = (10A + B) ≡ (A + 4B) (mod7). 

 

Example: Is 50661 divisible by 13?  

A = 5066, B = 1, (A + 4B) = (5066 + 4*1) = 5070 

The process is now repeated for 5070: A = 507, B = 0, (A + 4B) = 507 

The process is repeated for 507:  A = 50, B = 7, (A + 4B) = 78 

The process is repeated for 78:  A = 7, B = 8, (A + 4B) = 39 

If the process is repeated for 39: A = 3, B = 9, (A + 4B) = 39 

we see that 39 is again obtained. The process can now be terminated,  since 39 ≡ 0 (mod 13), 
thus (A + 4B) ≡ 0 (mod 13). Thus 50661 is shown to be divisible by 13. 

In the test for divisibility of a number N = (10A + B) by 7, the value of (A - 2B) is determined. 
This value is, itself, then written in the form (10A’ + B’)  and the value of (A’ - 2B’) is 
determined.  The process is repeated until a final (A” - 2B”) value is found for which  
(A” - 2B”) ≡ 0 (mod 7). 



In the test for divisibility of a number N = (10A + B) by 13, the value of (A + 4B) is 
determined. This value is, itself, then written in the form (10A’ + B’)  and the value of  
(A’ + 4B’) is determined.  The process is repeated until a final (A”+ 2B”) value is found for 
which (A” + 4B”) ≡ 0 (mod 13). 

These modulo proofs for divisibility by the primes 7 and 13 can be extended to other prime 
numbers as well.  

Table 3 summarises the (𝐴 ± 𝑛𝐵) values which are employed in the identification of the 
twelve (previously unidentified) non-primes in Table 2. The prime divisors have been found 
to be 7, 11, 13, 17, 19, 23 and 29.  

Table 3: The application of (𝐀± 𝐧𝐁) values for prime divisors 7 to 29 

 

It can be observed that every prime divisor has a particular the (𝐴 ± 𝑛𝐵) value associated 
with it. 

 Divi- 

sor 

(𝑨± 𝒏𝑩) value Initial 
A 

Initial 
B 

Final 
A 

Final 
B 

Final Step 

1001 7 (A - 2B) ≡ 0(mod7) 100 1 9 8 9 - 2*8 =  -7 

1003 17 (A- 5B)≡0(mod17) 100 3 8 5 8 - 5*5 = -17 

1007 19 (A+2B)≡0 (mod19) 100 7 11 4 11 + 2*4 =19 

1027 13 (A+4B)≡0(mod13) 102 7 13 0 13 + 4*0 = 13 

1037 17 (A - 5B)≡0(mod17) 103 7 6 8 6 - 5*8 = -34 

-34≡ 0(mod17) 

1043 7 (A - 2B) ≡ 0(mod7) 104 3 9 8 9 - 2*8 =  -7 

1057 7 (A - 2B) ≡ 0(mod7) 105 7 9 1 9-2*1=7 ≡ 0 

1067 11 (A - B)≡ 0(mod11) 106 7 9 9 9 - 9 = 0 

1073 29 (A+3B)≡0(mod29) 107 3 11 6 11 + 3*6 = 29  

1079 13 (A+4B)≡0(mod13) 107 9 14 3 14 + 4*3 = 26 

26≡ 0(mod13) 

1081 23 (A+7B)≡0(mod23) 108 1 11 5 11 + 7*5 = 46 

46 ≡ 0(mod23) 

1099 7 (A - 2B) ≡ 0(mod7) 109 9 9 9 9 -  2*1= 7  



The Relationship between (𝐀± 𝐧𝐁) Values and the Osculators (Vestana) Employed in 
Vedic Mathematics Divisibility Tests 

Although osculators can generally be used to check for the divisibility of a number by any 
integer, the ensuing discussion focuses specifically on the use of Vedic Mathematics 
osculators in testing for divisibility by prime numbers. 

The divisibility test involves multiplying digits by an osculator from right to left. The 
osculator for a particular divisibly check equals the n in the expression (𝐴 ± 𝑛𝐵) related to 
the divisor being investigated. It can be seen from the examples below that division by 
numbers ending in the digits 3 and 9 have positive osculators (or n-values) associated with 
them, while division by numbers ending in the digits 1 and 7 have negative osculators. 
Positive n-values for numbers ending on  1 and 7 can, however, also be employed. 

Positive Osculators 

Divisors ending on the digit 9 have positive osculators. It can be shown that the n-values 09, 
19, 29, 59, … have the respective osculators 0+1=1, 1+1=2, 2+1=3, 5+1=6, etc. 

Divisors ending on the digit 3 also have positive osculators. To find the osculator, the divisor 
must be multiplied by 3, so that the final digit becomes a 9. For instance, in the case of 13 × 3 
= 39,  the osculator becomes the Ekadhika of 3, i.e. 3 + 1 = 4. (The Ekadhika is the multiplier 
used on application of the sutra Ekadhikena Purvena.) 

To test a number N for divisibility by 13, the last digit of the number must be multiplied by 
the osculator (4) and then added to the digit to its left. If this sum is greater than 13, the 
largest possible multiple of 13 must be subtracted from it, so that a number below 13 is 
obtained. This number is then again multiplied by the osculator 4, and the process continues 
until the last (left-most) digit of the numerator has been added. If the final sum obtained is 13, 
or a small multiple of 13, the number N is confirmed to be divisible by 13, i.e. N ≡ 0 
(mod13). 

Example: Is 1027 divisble by 13? 

Using the modular arithmetic approach, and finding (A + 4B), we find that 

102 + (4×7) = 130, which is clearly divisible by 13. Therefore 1027 is divisible by 13. 

The divisibility of 1027 by 13 can also be tested using the osculator 4. Firstly, write the last 
digit 7 in the bottom line as shown below. 

 

1 0 2 7
12 16 28

13 3 4 7

 

Steps:  1) (4×7) = 28 

2)  28 + 2 = 30; but 30 > 13, so 30 – 2(13) = 4. Write this 4 to the left of the 7. 



3) (4×4) = 16 

4) 16 + 0 = 16; but 16 > 13, so 16 – 1(13) = 3. Write this 3 to the left of the 4.  

5) (4×3) = 12 

6) 12 + 1 = 13 

Because the final sum obtained is 13, 1027 is confirmed to be divisible by 13. 

Negative Osculators 

Divisors ending on the digit 1 can be assigned positive or negative osculators. It can be 
shown that the n-values for the primes 11, 31, 41, 51, … have the respective negative 
osculators -1, -3, -4, -5 etc. (Positive osculators can be used when the numbers get too large.) 

Divisors ending on the digit 7 can also have positive or negative osculators. The negative 
osculator for the divisor 7 is -2. This corresponds to the n-value obtained for the divisor 7 in 
the expression (A - 2B). The positive osculator for the divisor 7 can be shown to be 5. This 
corresponds to an n-value obtained for the divisor 7 in an expression (A + 5B). 

Example: Is 1043 divisible by 7? 

Using the modular arithmetic approach, and finding (A - 2B), we find that 

104 - (2×3) = 98.  Repeating the process, we obtain 9 – (2×8) = -7.  

As -7 ≡ 0 (mod 7), 1043 is confirmed to be divisible by 7. 

The divisibility of 1043 by 7 can also be tested using the osculator -2. A process similar to 
that discussed previously, is carried out: 

 

1 0 4 3
8 4 6

7 4 2 3

 

As -7 ≡ 0 (mod 7), 1043 is confirmed to be divisible by 7. 

The application of the positive osculator 5 yields: 

 

1 0 4 3
20 25 15

21 4 5 3

 

As 21 ≡ 0 (mod 7), 1043 is confirmed to be divisible by 7. 

The number 1043 can be written ss a sum of multiples of 7: 1043 = 700 + 280 + 63 

700 ≡ 0 (Mod7 ), 280 ≡ 0(Mod7), 63 ≡ 0(Mod7) 

By the modulo addition property, 1043 ≡ 0(Mod7) 



An Example of a Divisibility Test for the Number 8801 

The method described below involves attempting to write the number being investigated as a 
sum of multiples of the divisor (as far as it is possible). The modulo addition property is then 
employed. 

Is 8801 a prime number? 

a) Check for divisibility by 7 

Attempt to write 8801 as the sum of multiples of 7: 

8801 = 8400 + 350 + 49 + 2 

8400 ≡ 0(Mod7), 350 ≡ 0(Mod7), 49 ≡ 0(Mod7), and 2 ≡ 2(Mod7) 

By the modulo addition property, 8801≡ 2(Mod7), therefore, 8801 is not divisible by 7. 

b) Check for divisibility by 11 

Attempt to write 8801 as the sum of multiples of 11: 

8801 = 8800  + 1 

8800 ≡ 0(Mod11), 1 ≡ 1(Mod11) 

By the modulo addition property, 8801≡ 1(Mod11), therefore, 8801 is not divisible by 11. 

c) Check for divisibility by 13 

Attempt to write 8801 as the sum of multiples of 13: 

8801 = 7800 + 910 + 91 

780 0≡ 0(Mod13), 910 ≡ 0(Mod13), 91≡ 0(Mod13) 

By the modulo addition property, 8801≡ 0(Mod13), therefore, 8801 is divisible by 13. 

Conclusion: 8801 is not a prime number.  

	  



Primes between 1 and 100 - arranged according to their digital roots - on a Nine Point 
circle 

 

 

 

 

 

 

 

 

As illustrated in the diagram, the primes between 1 and 100 have been arranged at nine 
different positions around a circle. All the primes with digital roots  equal  to 1 (i.e. 1, 19, 37 
and 73) are placed at the first position; those with digital roots equal to 2 (i.e. 2, 11, 29, 47 
and 83) are placed at the second position, and so forth. As no primes (other than 3) have 
digital roots of 3, 6 and 9, there are no prime numbers (other than 3) situated at positions 3, 6 
and 9.  

Arranging larger and larger primes this way can be a technique to help investigate possible 
patterns which might emerge. 

Conclusion 

This paper has illustrated how modular processes underlie the working of the osculators in 
Vedic Mathematics divisibility checks.  Modular arithmetic provides a quick and efficient 
method to help find the prime factors of relatively large numbers.  
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