IAVM

Sample IVMO Senior
Time allowed - 1 Hour

1. 984756
$\times 999997$ \qquad
2. Draw a circle round the number below that is divisible by 45 .

814250
728515
637425
128590
439365
3. 52×54
5. 0.075^{2}
7. 432×2002
9. Work out 410.2367×201.2785 correct to 2 significant figures.
11. What number, when multiplied by itself, is equal to 27×147 ?
13. Express 45 as the difference of two square numbers that are integers in two different ways.
12. Calculate,

$$
729^{2}-271^{2}
$$

4. Divide,

5. 997^{2}
6. Divide,

$$
62 \lcm{19902}
$$

10. 0.48^{3}
11. 0.0994×87.6
12. How many of the following positive integers are divisible by 24 ?
A $2^{2} \times 3^{2} \times 5^{2} \times 7^{3}$
B $2^{2} \times 3^{2} \times 5^{3} \times 7^{2}$
C $2^{2} \times 3^{3} \times 5^{2} \times 7^{2}$
D $2^{3} \times 3^{2} \times 5^{2} \times 7^{2}$
13. The sum of the areas of the squares on the sides of a right-angled isosceles triangle is $72 \mathrm{~cm}^{2}$. What is the area of the triangle?
14. The positive integer n lies between 1 and 20. Rithik adds up all the integers from 1 to n inclusive. Tilly adds up all the numbers from $n+1$ to 20 inclusive. Their totals are the same. What is the value of n ?
15. Find the equation of the straight line with gradient, 3 , and that passes through the point $(4,2)$.
16. The integer n is the mean of the three numbers 17,23 and $2 n$. What is the digital root of n ?
17. A frog sits on a lilly pad in a large pond covered in lillies. The frog jumps 1 metre, then 0.5 meters and then 0.25 metres; each time halving the distance of the previous jump. Theoretically, if the frog continues like this forever, how far will it go?
18. Find the equation of the straight line perpendicular to the line with equation, $3 x+5 y=23$ and which passes through the point (1,5).
19. Two lines have equations, $2 x+3 y=15$ and $5 x+4 y=13$.
What is the position of their point of intersection?
20. Find the square root of the perfect square, 5776.
21. How many non-recurring decimal digits are there in the decimal equivalent of $\frac{101}{475}$?
22. Find the cube root of the exact cube, 238,328
23. Find the radius and position of centre of the circle with equation,

$$
x^{2}+y^{2}-10 x+6 y-15=0
$$

32.

$$
f(x)=2 x^{3}-2 x^{2}-a x+a
$$

Given that $(x+2)$ is a factor of $f(x)$, find the value of the constant a.
25. To 4 significant figures calculate the area of a rectangular sheet of metal measuring 1.324 m by 10.06 m .
27.

Calculate the decimal equivalent for $\frac{7}{29}$, correct to 6 decimal places.
29. Find the constants a and b given that,

$$
\begin{aligned}
& \left(3 x^{2}-2 x+7\right)\left(4 x^{2}+a x+b\right) \\
& =12 x^{4}+x^{3}+16 x^{2}+25 x-14
\end{aligned}
$$

31. Show that for all positive intergers n,

$$
(3 n+1)^{2}-(3 n-1)^{2}
$$

is divisible by 12 .
33. Expand and simplify,

$$
\left(2 x^{2}-3 x+7\right)\left(3 x^{2}+5 x-3\right)
$$

34. Differentiate,

$$
5 x e^{2 x}
$$

36. Find the first three terms in the series expansion for,

$$
\frac{8+x}{(2-x)^{2}}
$$

38. Evaluate,

$$
\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}
$$

40. Find the area of the parallelogram given the coordinates of three vertices as shown.

41. Find the minimum value of k for which the line $y=2 x+k$ intersects with the curve, $y=x^{2}-4 x-5$.
42. Work out the area of the shaded region, leaving your answer in terms of π. The 10 cm line is tangent to the inner circle.

43.

Find the sum of the three angles A, B and C.
45. Find the position of point $\mathrm{A}(5,2)$ after it has been rotated about the origin through an angle of 60°.
46. Find the shortest distance from the origin to the line with equation, $3 x-4 y=5$.
47.

$$
99^{3}+3 \times 99^{2}+9 \times 33+1
$$

48. Find the area under the curve, with equation,

$$
y=\frac{3 x+8}{(2 x+5)(x+3)}
$$

that lies above the x -axis and between the lines $\mathrm{x}=0$ and $\mathrm{x}=2$, leaving your answer in the form $a \ln b$.
49.

The figure shows a rectangle, $A B C D$. The equation of the line $A B$ is $2 x+5 y=10$. The point A lies on the y -axis and points B and D lie on the x -axis.

Work out the area of the rectangle.
50. How many squares are there?

IAVM

Sample IVMO Senior ANSWERS

Time allowed - 1 Hour

1. $984756-015244$
$\times 999997-000003$
984753 / 045732
All from 9 and the last from 10
2.

$$
\begin{array}{r}
52+02 \\
\times 54+04 \\
\hline 2) \frac{56 / 08}{2808}
\end{array}
$$

All from 9 and the last from 10
5.
$0.075^{2} \quad 0.005625$
By one more than the one before
7. 432×2002864864

Transpose and apply
9. Work out 410.2367×201.2785 correct to 2 significant figures.

410.2367
$\times 201.2785$
824_{1}^{3}
$82000(2 \mathrm{sf})$

Vertically and crosswise
11. What number, when multiplied by itself, is equal to 27×147 ?

$$
3 \times 9 \times 3 \times 49=9^{2} \times 7^{2}=63^{2}
$$

All the multipliers
2. Draw a circle round the number below that is divisible by 45 .

$$
637425
$$

By elimination and retention
4. Divide,

6. $997^{2} \quad 994009$

Whatever the extent of the deficiency, lessen it further and set up the square
8. Divide,

$$
6^{2} 199_{1} 9_{1} 0 / 2
$$

3 2 1/0
Vertically and crosswise
10.
0.48^{3}

64	128	256	512
	256	512	
110	5	9	2
0.110592			

Proportionately
Ultimate and twice the penultimate
12. Calculate,

$$
729^{2}-271^{2}
$$

$$
(729+271)(729-271)=458,000
$$

By addition and subtraction
13. Express 45 as the difference of two square numbers that are integers in two different ways.

$$
\begin{aligned}
45 & =5 \times 9=7^{2}-2^{2} \\
& =3 \times 15=9^{2}-6^{2}
\end{aligned}
$$

All the multipliers
By addition and subtraction

An additional answer can be obtained as, $\left(\frac{45+1}{2}\right)^{2}-\left(\frac{45-1}{2}\right)^{2}=23^{2}-22^{2}=45$

By addition and subtraction
14. 0.0994×87.6

$$
\begin{array}{r}
994-006 \\
\times 876-124 \\
\hline 870 / 744 \\
\hline 8.70744
\end{array}
$$

All from 9 and the last from 10

15. How many of the following positive integers are divisible by 24 ?
A $2^{2} \times 3^{2} \times 5^{2} \times 7^{3}$
B $2^{2} \times 3^{2} \times 5^{3} \times 7^{2}$
C $2^{2} \times 3^{3} \times 5^{2} \times 7^{2}$
D $2^{3} \times 3^{2} \times 5^{2} \times 7^{2}$

$$
24=2 \times 2 \times 2 \times 3 \quad \therefore \text { One }
$$

All the multipliers
16. The sum of the areas of the squares on the sides of a right-angled isosceles triangle is $72 \mathrm{~cm}^{2}$. What is the area of the triangle?

$$
\begin{aligned}
& x^{2}+x^{2}+2 x^{2}=72 \\
& x^{2}=18, \text { Area }=9 \mathrm{~cm}^{2}
\end{aligned}
$$

Transpose and apply
18. The positive integer n lies between 1 and 20. Rithik adds up all the integers from 1 to n inclusive. Tilly adds up all the numbers from $n+1$ to 20 inclusive. Their totals are the same. What is the value of n ?

$$
\begin{aligned}
& S_{20}=\frac{20 \times 21}{2}=210 \\
& \frac{1}{2} S_{20}=105=\frac{n(n+1)}{2}, \quad n=14
\end{aligned}
$$

When the total is the same, it is nought
17. The integer n is the mean of the three numbers 17,23 and $2 n$. What is the digital root of n ?

$$
\frac{17+23+2 n}{3}=n, \quad n=40, \quad D R=4
$$

Specific and general
19. A frog sits on a lilly pad in a large pond covered in lillies. The frog jumps 1 metre, then 0.5 meters and then 0.25 metres; each time halving the distance of the previous jump. Theoretically, if the frog continues like this forever, how far will it go?

$$
\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{1}{1-0.5}=2
$$

Specific and general
22. Find the equation of the straight line that passes through the points $(2,9)$ and $(1,2)$.
23. Two lines have equations, $2 x+3 y=15$ and $5 x+4 y=13$.
What is the position of their point of intersection?

$$
\begin{gathered}
x=\frac{3 \times 13-4 \times 15}{3 \times 5-2 \times 4}=\frac{-21}{7}=-3 \\
y=\frac{5 \times 15-2 \times 13}{7}=\frac{49}{7}=7 \\
\text { Transpose and apply }
\end{gathered}
$$

24. Find the square root of the perfect square, 5776.

$$
76
$$

By the last digits
26. How many non-recurring decimal digits are there in the decimal equivalent of $\frac{101}{475}$?

$$
475=25 \times 19 \therefore \text { two }
$$

All the multipliers

$$
7 x-y=5
$$

Transpose and apply

Product of the means

minus product of the extremes

Alternatively,
Adding $\Rightarrow 7 x+7 y=28 \Rightarrow x+y=4$
Subtracting $\Rightarrow-3 x-y=2$
Adding $\Rightarrow-2 x=6 \Rightarrow x=-3 \Rightarrow y=7$

By addition and subtraction
25. To 4 significant figures calculate the area of a rectangular sheet of metal measuring 1.324 m by 10.06 m .

$$
\begin{array}{r}
1324+324 \\
\times 1006+006 \\
\hline 1331 / 94_{1} 4 \\
\hline 13.32 m^{2}
\end{array}
$$

All from 9 and the last from 10
27.

Calculate the decimal equivalent for $\frac{7}{29}$, correct to 6 decimal places.

$$
0.24_{1} 1_{2} 3_{2} 793 \ldots
$$

0.241379

By one more than the one before
30. Find the radius and position of centre of the circle with equation,

$$
\begin{aligned}
& x^{2}+y^{2}-10 x+6 y-15=0 \\
& (x-5)^{2}-25+(y+3)^{2}-9=15 \\
& (5,-3) \quad r=7
\end{aligned}
$$

By completion and non-completion
32.

$$
f(x)=2 x^{3}-2 x^{2}-a x+a
$$

Given that $(x+2)$ is a factor of $f(x)$, find the value of the constant a.

$$
\begin{aligned}
f(-2) & =-16-8+2 a+a=0 \\
a & =8
\end{aligned}
$$

When the total is the same, it is zero

Transpose and apply

34. Differentiate,

$$
5 x e^{2 x}
$$

$5 x \quad e^{2 x} \quad$ Vertically and crosswise
$\frac{52 e^{2 x}}{10 x e^{2 x}+5 e^{2 x}}$
Differential calculus
Particular and general
36. Find the first three terms in the series expansion for,

$$
\frac{8+x}{(2-x)^{2}}
$$

31. Show that for all positive intergers n,

$$
(3 n+1)^{2}-(3 n-1)^{2}
$$

is divisible by 12 .

$$
\begin{aligned}
& (3 n+1+3 n-1)(3 n+1-3 n+1) \\
& =12 n
\end{aligned}
$$

By addition and subtraction
33. Expand and simplify,

$$
\left(2 x^{2}-3 x+7\right)\left(3 x^{2}+5 x-3\right)
$$

$$
\begin{array}{r}
2 x^{2}-3 x+7 \\
\times 3 x^{2}+5 x-3 \\
\hline 6 x^{4}+x^{3}+0 x^{2}+26 x-21
\end{array}
$$

Vertically and crosswise
35.

Find $\frac{d y}{d x}$ given that, $y=\frac{5 x+2}{3 x+7}$
$\frac{29}{(3 x+7)^{2}} \quad \begin{aligned} & \text { Vertically and crosswise } \\ & \end{aligned}$
37. Differentiate,

$$
\left(3 x^{2}+2 x+1\right)^{7}
$$

$$
7\left(3 x^{2}+2 x+1\right)^{6}(6 x+2)
$$

$2^{-2}(-x)^{0}+-2 \cdot 2^{-3} \cdot(-x)^{-1}+-3 \cdot-2 \cdot 2^{-4} \frac{(-x)^{2}}{2}+\cdots \quad$ Specific and general
$\frac{1}{4}+\frac{1}{4} x+\frac{3}{16} x^{2}+\cdots$
$8+x$
$2+\frac{9}{4} x+\frac{7}{4} x^{2}+\cdots$
Differential calculus Vertically and crosswise
By one more than the one before
38. Evaluate,

$$
\begin{gathered}
\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8} \\
21 \\
+51 \\
\begin{aligned}
97 \\
+81
\end{aligned} \\
\begin{aligned}
6565 & =45^{\circ}
\end{aligned}
\end{gathered}
$$

Vertically and crosswise
40. Find the area of the parallelogram given the coordinates of three vertices as shown.

$(7,15) \quad(16,7)$

- $(5,3)(5,3)$
$(2,12)(11,4)$
$=132-8=124$

39. Given the two triples, A) 435 and B) $125 \quad 13$, find a triple for $A+B$.

$$
\begin{array}{r}
435 \\
+12513 \\
\hline 3356 \quad 65
\end{array}
$$

Vertically and crosswise
41.

The circle in the diagram has a radius of 6.5 cm . If the perimeter of the rectangle is 34 cm , what is its area?

$$
\begin{aligned}
& 6.5 \times 2=13, \quad 34 \div 2=17 \\
& 13^{2}=5^{2}+12^{2} \\
& \text { Area }=5 \times 12=60 \mathrm{~cm}^{2}
\end{aligned}
$$

When the totals are the same, it is zero

By inspection
By insection

Transpose and apply
Product of the means
minus product of the extremes
42. Find the minimum value of k for which the line $y=2 x+k$ intersects with the curve, $y=x^{2}-4 x-5$.

$$
\begin{aligned}
& x^{2}-4 x-5=2 x+k \quad \text { When the totals are the same, it is zero } \\
& x^{2}-6 x-(k+5)=0 \\
& b^{2}-4 a c \geq 0 \\
& 36+4 k+20 \geq 0 \\
& k \geq-14
\end{aligned}
$$

43. Work out the area of the shaded region, leaving your answer in terms of π. The 10 cm line is tangent to the inner circle.
$R^{2}-r^{2}=5^{2}$
Difference in areas $=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)=25 \pi$

Transpose and apply
44.

Find the sum of the three angles A, B and C.

$$
\begin{array}{r}
31 \\
+\begin{array}{r}
2 \\
5
\end{array} \\
+\frac{5}{1} 1 \\
\hline 910
\end{array} \quad \text { Vertically and crosswise }
$$

45. Find the position of point $\mathrm{A}(5,2)$ after it has been rotated about the origin through an angle of 60°.

5	2
+	$\sqrt{3}$
$\frac{5-2 \sqrt{ } 3}{} \quad 5 \sqrt{ } 3+2$	

46. Find the shortest distance from the origin to the line with equation, $3 x-4 y=5$.

$$
\frac{|-5|}{\sqrt{3^{2}+4^{2}}}=1 \quad \text { Transpose and apply }
$$

47.

$99^{3}+3 \times 99^{2}+9 \times 33+1$

$$
\begin{aligned}
& 99^{3}+3 \times 99^{2}+3 \times 99+1 \quad \text { By inspection } \\
& =(99+1)^{3}=1,000,000
\end{aligned}
$$

48. Find the area under the curve, with equation,

$$
y=\frac{3 x+8}{(2 x+5)(x+3)}
$$

that lies above the x -axis and between the lines $\mathrm{x}=0$ and $\mathrm{x}=2$, leaving your answer in the form $a \ln b$.

$$
\begin{gathered}
\quad \frac{3 x+8}{(2 x+5)(x+3)}=\frac{1}{2 x+5}+\frac{1}{x+3} \\
\text { Area }=\left[\frac{1}{2} \ln (2 x+5)+\ln (x+3)\right]_{0}^{2} \\
=\frac{1}{2} \ln 9+\ln 5-\frac{1}{2} \ln 5-\ln 3=\frac{1}{2} \ln 5
\end{gathered}
$$

When the totals are the same, it is zero
Differential calculus
49.

The figure shows a rectangle, $A B C D$. The equation of the line $A B$ is $2 x+5 y=10$. The point A lies on the y-axis and points B and D lie on the x-axis.

Work out the area of the rectangle.

$$
\begin{aligned}
& A \text { lies at }(0,2), B \text { lies at }(5,0) \\
& D A \text { is } 5 x-2 y=-4, D \text { lies at }\left(\frac{-4}{5}, 0\right) \\
& \quad\left(\frac{-4}{5}, 0\right) \quad(5,0) \\
& -(0,2) \quad(0,2) \\
& \hline\left(\frac{-4}{5},-2\right) \quad(5,-2) \\
& \text { Area }=\left|-10-\frac{8}{5}\right|=11 \frac{3}{5}
\end{aligned}
$$

Transpose and adjust
By elimination and retention
Product of the means
minus product of the extremes
50. How many squares are there?

$$
51
$$

By elimination and retention

