Trigonometry: The Vedic Way

By Tanmay Deepak and Abhiram Krishna

Abstract

Trigonometric identities are an integral part of trigonometry. In this paper, we
aim to prove various trigonometric identities using Vedic Math methods, primarily
‘Triples and the sutra ‘By mere observation’. Using these Vedic Math techniques,
we can arrive at a simpler and, compared with conventional derivations, more
intuitive proofs for these identities. These help us to reinforce the concepts in our
minds.

Objectives

The primary objectives of this paper are:

« To apply Vedic Mathematics techniques to the derivation of trigonometric
identities.

« To leverage the unit circle method for quadrant-based derivations.
o Toimplement the triples method for formula simplification.

o To demonstrate how Vedic Math sutras such as “Vilokanam” (By Mere
Observation) facilitate quicker calculations.

o To compare the efficiency of Vedic-based derivations with conventional
methods.

Quadrant Angles

To find the values of trigonometric ratios of angles in the cartesian plane, there
are certain conventions about the signs of each of the ratios. To understand
these, we make use of a unit circle (a circle with radius 1 unit). Here, the angle 6 is
an acute angle.
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In the above figure, (a,b) refers to a point on the cartesian plane. Thus,
a = cos6
b = sin6

This applies for 8, —8, 180 — 8, and 180 + 6 . In the graph, a and b have
different signs in different quadrants. Thus, we can find out the sign of the
trigonometric ratio by considering the sign of the coordinates in that quadrant.
The sign of the abscissa can be used to figure out the sign of the cosine of the
angle and the sign of the ordinate can be used to figure out the sign of the sine of
the angle. Thus,

e In the first quadrant (for ), a and b are positive. This means that both
cos 0 and sin 6 are positive.



In the second quadrant (for 180 — 8), a is negative and b is positive. This
means that cos 6 is negative and sin 0 is positive.

In the third quadrant (for 180 + 8), both a and b are negative. This means
that both cos 8 and sin 0 are negative.

In the fourth quadrant (for —6), a is positive and b is negative. This means
that cos 0 is positive and sin 6 is negative.

By Mere Observation

Now, we can find the values of various trigonometric ratios without much
calculation. There are certain things to keep in mind:

If we have to find a ratio for 8 or (180 + 0), we retain the triple for the
reference angle (6) and change the sign of the output according to the
guadrant.
Eg: To find cos210°,
210° = 180° + 30°
Thus, 30° is our refence angle. So, the triple will be:
30vV3 1 2
Since, we're adding it to 180°, the triple remains the same. We only need
to change the sign of the adj and opp side values. So, the triple will now
be:
210°)—vV3 -1 2

Thus, cos210° = —\/;.

If we have to find a ratio for 90 + 8 or (270 + 0), we switch the adj and
opp side values for the triple of the reference angle (8) and change the sign
of the output according to the quadrant.
Eg: To find tan240°,
240° = 270° — 30°
Thus, 30° is our refence angle. So, the triple will be:
30vV3 1 2



Since, we're subtracting it from 270°, the triple gets inversed. Now, we also
need to change the sign of the adj and opp side values. So, the triple will
now be:

240°)—1 —+3 2
~V3
Thus, tan240° = —= = V3.

This entire process can easily be performed mentally by mere observation.

Using Pythagoras Theorem

Directly using the Pythagoras theorem, we can derive a few more important
trigonometric identities. The Pythagoras theorem can be represented as:
a’ + b? = ¢?
Or, we may rewrite it in terms of the sides with respect to an angle, like so:
adj* + opp® = hyp®

Where adj = adjacent side, opp = opposite side, and hyp = hypotenuse. Now, to
derive the first identity, we can divide the whole equation by the square of the
hypotenuse (hyp?):

adj? +0pp2 hyp

hyp? " hyp? hyp?

cos?0 +sin?20 =1

2

Similarly, when we divide the entire equation by the square of the adjacent side
(adj"2), we get:

adj’ N opp®> _ hyp
adj?  adj?  adj?

1+ tan? @ = sec? 0
Rewriting this equation, we also get:
sec’2@ —tan?0 =1

sec’20 — 1 = tan?0



And, when we divide the entire equation by the square of the opposite side
(opp?), we can derive:

adj’ N opp® _ hyp?

opp? opp? opp?

cot?0 + 1 = cosect? 0

And rewriting this equation, we get:
cosec? 0 — cot?’0 =1

cosec?0 — 1 = cot? 0

Trigonometric Ratios for the Sum and Difference of
Angles

Let’s take a right triangle with hypotenuse of one unit. Then the sides would be
cosA and sinA. Similarly, taking another right triangle with hypotenuse of one
unit, then the sides would be cosB and sinB. Now we add the triples using triple
addition:

A) cos A sin A 1

B) cosB sin B 1
A+B) cos AcosB — sinA cos B + 1

sinAsin B cosAsinB

Thus, we have obtained three of our identities:
sin(4 + B) = sinAcosB + cosAsinB
cos(A + B) = cosAcosB — sinAsinB



sinAcosB + cosAsinB
tan(A + B) =

cosAcosB — sinAsinB

By dividing the Numerator and Denominator by cosAcosB

SinAcosB + cosAsinB

cosAcosB
cosAcosB — sinAsinB
cosAcosB

Thus,

tanA + tanB
1 — tanAtanB

tan (A+ B) =

Now, we do triple subtraction to get our next three identities:

A) cos A sin A 1

B) cosB sin B 1
A-B) cosAcos B + sinA cosB — 1

sinAsin B cosAsinB

Thus, we have directly proven three more identities:
sin(4 — B) = sinAcosB — cosAsinB

cos(4 — B) = cosAcosB + sinAsinB

SinAcosB — cosAsinB

tan(4A — B) =
an( ) cosAcosB + sinAsinB

By dividing the Numerator and Denominator by cosAcosB:

sinAcosB — cosAsinB
cosAcosB

cosAcosB + sinAsinB
cosAcosB




Thus,

¢ A— B = tanA — tanB
an ( )= 1+ tanAtanB
Double Angle
A) cos A sin A 1
2A)cos? A — sin? A 2sinAcosA 1

sin2A = 2sinAcosA

cos2A = cos? A — sin? A

=1-2sin%4
=2cos?A4A-1
2sinAcosA

tan24 =

cos?2 A —sin2 A

Dividing the numerator and denominator by cos? A, we get:

tan2A — 2tanA
anes = 1—tan%4
Triple Angle
A) cosA sin A
2A)cos? A — sin? A 2sin A cosA
3A) cosA(cos? A — sin? A) — sinA(cos® A — sin? A)

sinA(2sinAcosA) +cosA(2sinAcosA)



Thus, we have derived the following:
sin3A = sinA(cos? A — sin? A) + cosA(2sinAcosA)
= sinA cos? A — sin3 A + 2sinA cos? A
= 3sinA cos? A —sin3 A
= (3sind)(1 —sin® A) —sin3 4
= 3sinA — 3sin3 A — sin3 A
= 3sinA — 4sin3 A

sin34 = 3sinA — 4sin3 A

cos3A = cosA(cos? A — sin? A) — sinA(2sinAcosA)
= cos3 A — cosAsin? A — 2cosAsin? A
= cos3 A — 3cosAsin? A
= cos3 A — 3cosA(1 — cos? A)
= cos3A —3cosA+ 3cos® A
= 4 cos3 A — 3cosA

cos3A = 4cos3A — 3cosA

sinA(cos? A — sin? A) + cosA(2sinAcosA)
cosA(cos? A — sin? A) — sinA(2sinAcosA)

tan3A =

_ sinA(cos? A —sin® A + 2 cos® A)
~ cosA(cos2 A —sin2 A — 2sin2 A)

(3 cos? A —sin? A)
(cos? A — 3sin? A)

= tanA



Divide the Numerator and Denominator by cos? A:

(3 cos? A —sin? A)
cos? A
(cos? A — 3sin? A)
cos? A
(3 —tan? A)
(1 — 3tan? A)

tanA

= tanA

_ 3tanA - tan3 A
~ 1-—3tan?4
Thus,

3tand — tan3 A
1—3tanZ2A4

tan34 =

Sum and Difference of Trigonometric Ratios

Now, we know that:

/sin(A + B) = sinAcosB + cosAsinB\
cos(A + B) = cosAcosB — sinAsinB

sin(A — B) = sinAcosB — cosAsinB

cos(A — B) = cosAcosB + sinAsinB

- /

Thus,
sin(A + B) + sin(A — B) = sinAcosB + cosAsinB + sinAcosB — cosAsinB

= 2sinAcosB

Substitute (A + B) with Cand (A — B) with D



2A 2B
sinC + sinD = 2sin —cos—

2 2
A+B)+(A—B A+B)—(A—B
sinC + sinD = 2sin [( ) +( )] cos [( ) —( )]
2 2
Thus,
. . . C+D Cc-D
sinC + sinD = 2sin cos >

Similarly,

sin(A + B) — sin(A — B) = sinAcosB + cosAsinB — (sinAcosB — cosAsinB)
sin(A + B) — sin(A — B) = 2cosAsinB

Substituting (A + B) with C and (A — B) with D, we get:

) ) 2A 2B
sinC — sinD = 2cos—sin7
. . [(A+B)+(A-B)] . [(A+B)—-(A-B)]
sinC — sinD = 2cos sin
2 2
Thus,
. . cC+D _ C-D
sinC — sinD = 2cos sin 2

Next,

cos(4 + B) + cos (A — B)
= coSAcosB — sinAsinB + cosAcosB + sinAsinB

= 2cosAcosB

Now, replace (A + B) with C and (A — B) with D:



24 2B

2 —_ —_
cos > cos >
(A+B)+ (A—-B) (A+B)—(A—-B)
= 2cos > coS >

Thus,

C+D cC—-D
cos 2

cosC + cosD = 2cos

And, finally for the last identity:
cos(A+ B) — cos(A — B)
= (cosAcosB — sinAsinB) — (cosAcosB + sinAsinB)
= —2sinAsinB

Now replace(4 + B) with C and (A — B) with D:

25 2A 2B

sin > sin >

~(A+B)+(A-B)  (A+B)—(A—-B)
= —2sin sin
2 2
Thus, we have:
. C+D C—-D
cosC — cosD = —2sin 2 sin 2

Comparison

Using these Vedic Math techniques, we can arrive at solutions to problems in a
faster and simpler way, as compared with the traditional way of solving. For
example, to calculate the trigonometric ratios of angles greater than 90°, we can
easily make use of the unit circle method or the mere observation method to get

our answer quickly.

Eg: Find sin (330°)



Ans 1 — Using Traditional Method

sin330° = sin(270 + 60) °
Now, using the formula,
sin(4 + B) = sinA cosB + cosA sinB
We get:
sin330° = sin270 cos60 + sin60 cos270

o)D)

Ans 2 — Using Vedic Math Method

330° = 270° + 60°
So, our triple is 60°) 1 NER)
Thus, 330°)v3 —1 2

And we have our final answer:

m330° = -
sin = 5

To find the trigonometric ratios of certain non-standard angles, we can use the
triple addition or subtraction methods.

Eg: Find cos15°

Answer 1 — Traditional Method

15° = 45° — 30°
Thus, we can use the formula,

cos(A — B) = cosA cosB + sinA sinB



So, we get

c0s15° = co0s45° cos30° + sin45° sin30°

1 \/— 1 1
JZ 2 \/— 2
V341
V2
Answer 2 — Vedic Math Method
45°) 1 1 V2
30°) V3 1 2

15°0W/3 + 1 —_ 242

Thus, we directly procured our final answer, without having to use any formulae.

V3 +1
24/2

cos15° =

Conclusion

By integrating Vedic Mathematics techniques into trigonometric proofs, we
provide a fresh perspective that enhances both speed and simplicity. The unit
circle method and the triples approach eliminate redundant calculations and the
need to memorize countless formulae, offering a more intuitive path to
understanding trigonometric identities. While traditional proofs remain
foundational, Vedic Math techniques serve as effective alternatives that can
accelerate problem-solving without the need for formulae.
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